跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊男
研究生(外文):Chun-Nan Lin
論文名稱:連結邏輯斯締系統的超混沌同步化研究
論文名稱(外文):Hyper Chaotic Synchronization of Coupled Logistic Systems
指導教授:林文偉林文偉引用關係
指導教授(外文):Wen-Wei Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:71
中文關鍵詞:連結邏輯斯締系統達到超混沌現象的方法同步化李昂普諾夫指數
外文關鍵詞:coupled logistic systemsmethods of routes to hyper chaossynchronizationLyapunov exponents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在連結邏輯斯締系統中,兩個通常用來滿足產生超混沌現象的條件將被提出來的. 在連結邏輯斯締系統中的某些實例將靠著圖表以及數值計算被展示如何達到超混沌現象. 在連結邏輯斯締系統中達到超混沌現象的方法將以數值計算來檢驗之. 分叉圖表和計算李昂普諾夫指數是用來確認混沌和超混沌現象的存在. 在連結邏輯斯締系統中同步化現象會被獲得.
Two basic conditions which should be usually satisfied in order to produce hyper chaos in the coupled logistic systems are proposed. Some cases in the coupled logistic systems are shown how route to hyper chaos by diagrams and numerical calculation. Methods of routes to hyper chaos in the coupled logistic systems are examined numerically. Bifurcation diagrams and Lyapunov exponents are then calculated to assert the existence of chaos and hyper chaos. Synchronization can be achieved in the coupled logistic systems.
Table of Contents

Abstract and Key Words . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . ii

1. Introduction . . . . . . . . . . . . . . . . . 1

2. Chaos and Hyper Chaos . . . . . . . . . . . . 3
2.1 Formulation . . . . . . . . . . . . . . . 3
2.2 Lyapunove exponents . . . . . . . . . . . 3
2.3 Synchronization . . . . . . . . . . . . . 4
2.4 Cases . . . . . . . . . . . . . . . . . . 5

3. Methods of Routes to Hyper Chaos . . . . . . . 52
3.1 Period à chaos à hyper chaos . . . . . . . . 53
3.2 Chaos à hyper chaos . . . . . . . . . . . . . 59
3.3 Period à hyper chaos à chaos . . . . . . . . 61
3.4 Period-3 à chaos à hyper chaos . . . . . . . 67
3.5 Chaos à hyper chaos à chaos à hyper chaos . . 69

4. Conclusion . . . . . . . . . . . . . . . . . . 70

References . . . . . . . . . . . . . . . . . . . . 71
References
1) J. Bobok and M. Kuchta, Invariant-measures for maps of the interval that do not have points of some period, Ergodic Theory Dynam. Systems 14 (1994) 9-21.
2) M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Pub. Math. – Paris 53 (1981) 17-51.
3) I. Mizera, Generic properties of one-dimensional dynamic-systems, Lecture Notes in Mathematics, Vol. 1514 (Springer, 1992), pp. 163-173.
4) P. Hall and R. C. Wolff, Properties of invariant distributions and Lyapunov exponents for chaotic logistic maps, J. Royal Statist. Soc. Ser. B57 (1995) 439-452.
5) A. J. Lawrance and N. Balakrishna, Statistical aspects of chaotic maps with negative dependency in a communications setting, J. Royal Statist. Soc. Ser. B63 (2001) 843-853.
6) Lawrance, A. J.; Wolff, Rodney C. Binary time series generated by chaotic logistic maps. Stoch. Dyn. 3 (2003), no. 4, 529—544
7) Mosekilde, Erik; Maistrenko, Yuri; Postnov, Dmitry Chaotic synchronization. Applications to living systems. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 42. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. xii+428 pp. ISBN: 981-02-4789-3
8) Bonanno, C.; Menconi, G. Computational information for the logistic map at the chaos threshold. Discrete Contin. Dyn. Syst. Ser. B 2 (2002), no. 3, 415--431.
9) Alligood, Kathleen T.; Sauer, Tim D.; Yorke, James A. Chaos. An introduction to dynamical systems. Textbooks in Mathematical Sciences. Springer-Verlag, New York, 1997. xviii+603 pp. ISBN: 0-387-94677-2
10) \v Cernak, J. Digital generators of chaos. Phys. Lett. A 214 (1996),no. 3-4, 151--160.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top