|
References 1) J. Bobok and M. Kuchta, Invariant-measures for maps of the interval that do not have points of some period, Ergodic Theory Dynam. Systems 14 (1994) 9-21. 2) M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Pub. Math. – Paris 53 (1981) 17-51. 3) I. Mizera, Generic properties of one-dimensional dynamic-systems, Lecture Notes in Mathematics, Vol. 1514 (Springer, 1992), pp. 163-173. 4) P. Hall and R. C. Wolff, Properties of invariant distributions and Lyapunov exponents for chaotic logistic maps, J. Royal Statist. Soc. Ser. B57 (1995) 439-452. 5) A. J. Lawrance and N. Balakrishna, Statistical aspects of chaotic maps with negative dependency in a communications setting, J. Royal Statist. Soc. Ser. B63 (2001) 843-853. 6) Lawrance, A. J.; Wolff, Rodney C. Binary time series generated by chaotic logistic maps. Stoch. Dyn. 3 (2003), no. 4, 529—544 7) Mosekilde, Erik; Maistrenko, Yuri; Postnov, Dmitry Chaotic synchronization. Applications to living systems. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 42. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. xii+428 pp. ISBN: 981-02-4789-3 8) Bonanno, C.; Menconi, G. Computational information for the logistic map at the chaos threshold. Discrete Contin. Dyn. Syst. Ser. B 2 (2002), no. 3, 415--431. 9) Alligood, Kathleen T.; Sauer, Tim D.; Yorke, James A. Chaos. An introduction to dynamical systems. Textbooks in Mathematical Sciences. Springer-Verlag, New York, 1997. xviii+603 pp. ISBN: 0-387-94677-2 10) \v Cernak, J. Digital generators of chaos. Phys. Lett. A 214 (1996),no. 3-4, 151--160.
|