|
1. Aumann, R.J., Maschler M. (1964) The bargaining set for cooperative games. in: Advances in game theory, M. Dresher, L.S. Shapley and A.W. Tucker, eds., Annals of Mathematics Studies, Princeton University Press 52, 443-476 2. Aumann, R.J., Dr�嫙e J. (1974), Cooperative games with coalition structures. In- ternational Journal of Game Theory 3, 217-237. 3. Bolger, E. M. (1989), A set of axioms for a value for partition function games. International Journal of Game Theory 18, 37-44. 4. Brune, S. (1983), On the regions of linearity for the nucleolus and their computa- tion. International Journal of Game Theory 12, 47-80. 5. Clippel, G., Serrano R. (2005), Marginal contributions and externalities in the value. Working Paper 2005-11, Department of Economics, Brown University. 6. Davis, M., Maschler, M. (1967) Existence of stable payo�� con…gurations for coop- erative games. in: Essays in Mathematical Economics in Honor of Oskar Morgen- stern, M. Shubik, ed., Princeton, 39-52. 7. Fujinaka, Y. (2004a), Axiomatizations of the Shapley value for partition function form games. Mimeo, Graduate School of Economics, Kobe University, Japan. 8. Fujinaka, Y. (2004b), On the marginality principle in partition function form games. Mimeo, Graduate School of Economics, Kobe University, Japan. 9. Kohlberg, E. (1971), On the nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics 20, 62-66. 10. Kortanek, K.O. (1973), Piecewise linearity and uniform continuity in linear pro- gramming in n-person cooperative games, R.M. School of Urban and Public A��airs, Carnegie Mellon University, Pittsburgh, Pennsylvania. 11. Macho-Stadler, I., Perez-Castrillo D., Wettstein D. (2004), Sharing the surplus: an extension of the Shapley value for environments with externalities. CREA WP 119, Barcelona, Spain. 12. Maschler M. (1992), The bargaining, kernel and nucleolus. Handbook of Game Theory I, 591-667. 13. Maschler, M., Peleg B. (1967) The structure of the kernel of a cooperative game. SIAM Journal of Applied Mathematics 15, 569-604. 14. Maschler, M., Peleg B., Shapley, L.S. (1972) The kernel and bargaining set for convex games. International Journal of Game Theory 1, 73-93. 15. Myerson, R. B. (1977a), Values of games in partition function form. International Journal of Game Theory 6, 23-31. 16. Myerson, R. B. (1977b), Graphs and cooperation in games. Mathematics of Oper- ation Research 2, 225-229. 17. Myerson, R. B. (1980), Conference structures and fair allocation rules. Interna- tional Journal of Game Theory 9, 169-182. 18. Owen, G. Game theory, 3rd Ed. Academic Press, San Diego. 19. Pham Do, K. H., Norde H. (2002), The Shapley value for partition function form games. CentER DP 202-04, Tilburg University, The Netherlands. 20. Shapley, L. S. (1953), A value for n-person games. in Contributions to the Theory of Games II, ed. by H.W. Kuhn and A.W. Tucker. Princeton 1953, 307-317. 21. Shapley, L.S. (1967), On balanced sets and cores. Naval Research Logistics Quar- terly 14, 453-460. 22. Schmeidler, D. (1969), The nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics 17, 1163-1170. 23. Solymosi, T., Aarts, H., Driessen, T. (1998), On computing the nucleolus of a balanced connected graph. Mathematics of Operations Research 23, 983-1009. 24. Thrall, R.M., Lucas, W. F. (1963), n-person games in partition function form. Naval Research Logistics Quarterly X, 281-298. 25. Winter, E. (2002), The Shapley value. Handbook of Game Theory III, 2025-2054. 26. Young, H. P. (1985), Monotonic solutions of cooperative games. International Jour- nal of Game Theory 14, 65-72.
|