跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 21:35
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:楊奕祐
Author (Eng.):Yi-You Yang
Title:合作對局論之研究
Title (Eng.):Some Results on Cooperative Game Theory
Advisor:張企
advisor (eng):Chih Chang
degree:Ph.D
Institution:國立清華大學
Department:數學系
Narrow Field:數學及統計學門
Detailed Field:數學學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:English
number of pages:66
keyword (chi):合作對局夏普利值外部性
Ncl record status:
  • Cited Cited :0
  • HitsHits:196
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:1
這篇論文的研究主題可分為兩個部分,分別與合作對局論中的兩個重要的解nucleolus以及Shapley value有關。
我們的第一個主題是關於nucleolus的線性區域(linearity region)。由於nucleolus是一個單值(single-valued)的解,因此我們可以將之視為一個定義在對局空間(game space)上的函數。而在這裡所謂的線性區域(linearity region)指的是對局空間中的一個集合使得在此集合上nucleolus是一個線性函數。Kohlberg 在1971年介紹了balanced array的概念,並且使用這個概念來刻劃nucleolus的線性區域。在第二章中,我們定義了balanced topology的概念用以推廣balanced array,並且使用balanced topology的語言來刻劃nucleolus的最大線性區域(maximal linearity region)。然而,我們同時也發現並不是所有的線性區域都可以使用balanced topology加以刻劃。因此,找出所有的最大線性區域仍然是一個有意思的研究方向。在2.6節中,我們給了一個例子來說明這件事。
我們的第二個主題是推廣Shapley value到具有外部性的合作對局上(games with partition function form)。Thrall和Lucas在1963年定義了具有外部性的合作對局用以推廣TU games。所謂具有外部性的合作對局指的是當一個團體合作時,他們合作所帶來的利益與其外部成員的結盟情形有關。Shapley vlaue的想法與邊際貢獻(marginal contribution)的概念有著相當密切的關係。因此,我們的基本想法是希望能將邊際貢獻的概念推廣到具有外部性的合作對局上。在第三章中,我們提出一種在具外部性的合作賽局中評估邊際貢獻的辦法,我們稱之為coalitionally extracted marginal contribution(CEMC)。根據CEMC的想法,我們提出了一個在具外部性的合作賽局上的解,並且我們證明了在不具外部性的合作對局(TU games)上,這個解和原本的Shapley value是一樣的。此外,我們也提供了三組公設系統來刻劃這一個解。
CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . 1
1.1 The nucleolus and the Shapley value . . . . . . . 1
1.2 De…nitions and conventions .. . . . . . . . . . . 2
1.3 Summary . . . . . . . . . . . . . . . . . . . . . 7
CHAPTER 2. ON THE LINEARITY REGIONS OF THE NUCLEOLUS 9
2.1 Introduction .. . . . . . . . . . . . . . . . . . 9
2.2 Valid array . . . . . . . . . . . . . . . . . . . 10
2.3 Balanced topology . . . . . . . . . . . . . . . . 14
2.4 Maximal linearity region. . . . . . . . . . . . . 24
2.5 Decomposition of \Phi(T ;B_0) . . . . . . . . . . 32
2.6 Two examples . . . . . . . . . . . . . . . . . . 37
CHAPTER 3. CHARACTERIZATIONS OF A VALUE FOR PARTITION FUNC-
TION FORM GAMES . . . . . . . . . . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . 41
3.2 Definitions and facts . . . . . . . . . . . . . . 43
3.3 A value for partition function form games . . . . 45
3.4 Balanced contributions property . . . . . . . . . 53
3.5 Independence. . . . . . . . . . . . . . . . . . . 56
CHAPTER 4. EXTENSIONS . . . . . . . . . . . . . . . . 59
4.1 Several directions. . . . . . . . . . . . . . . . 59
4.2 Appendix. . . . . . . . . . . . . . . . . . . . . 61
REFERENCES CITED. . . . . . . . . . . . . . . . . . . 64
1. Aumann, R.J., Maschler M. (1964) The bargaining set for cooperative games. in:
Advances in game theory, M. Dresher, L.S. Shapley and A.W. Tucker, eds., Annals
of Mathematics Studies, Princeton University Press 52, 443-476
2. Aumann, R.J., Dr�嫙e J. (1974), Cooperative games with coalition structures. In-
ternational Journal of Game Theory 3, 217-237.
3. Bolger, E. M. (1989), A set of axioms for a value for partition function games.
International Journal of Game Theory 18, 37-44.
4. Brune, S. (1983), On the regions of linearity for the nucleolus and their computa-
tion. International Journal of Game Theory 12, 47-80.
5. Clippel, G., Serrano R. (2005), Marginal contributions and externalities in the
value. Working Paper 2005-11, Department of Economics, Brown University.
6. Davis, M., Maschler, M. (1967) Existence of stable payo�� con…gurations for coop-
erative games. in: Essays in Mathematical Economics in Honor of Oskar Morgen-
stern, M. Shubik, ed., Princeton, 39-52.
7. Fujinaka, Y. (2004a), Axiomatizations of the Shapley value for partition function
form games. Mimeo, Graduate School of Economics, Kobe University, Japan.
8. Fujinaka, Y. (2004b), On the marginality principle in partition function form
games. Mimeo, Graduate School of Economics, Kobe University, Japan.
9. Kohlberg, E. (1971), On the nucleolus of a characteristic function game. SIAM
Journal on Applied Mathematics 20, 62-66.
10. Kortanek, K.O. (1973), Piecewise linearity and uniform continuity in linear pro-
gramming in n-person cooperative games, R.M. School of Urban and Public A��airs,
Carnegie Mellon University, Pittsburgh, Pennsylvania.
11. Macho-Stadler, I., Perez-Castrillo D., Wettstein D. (2004), Sharing the surplus:
an extension of the Shapley value for environments with externalities. CREA WP
119, Barcelona, Spain.
12. Maschler M. (1992), The bargaining, kernel and nucleolus. Handbook of Game
Theory I, 591-667.
13. Maschler, M., Peleg B. (1967) The structure of the kernel of a cooperative game.
SIAM Journal of Applied Mathematics 15, 569-604.
14. Maschler, M., Peleg B., Shapley, L.S. (1972) The kernel and bargaining set for
convex games. International Journal of Game Theory 1, 73-93.
15. Myerson, R. B. (1977a), Values of games in partition function form. International
Journal of Game Theory 6, 23-31.
16. Myerson, R. B. (1977b), Graphs and cooperation in games. Mathematics of Oper-
ation Research 2, 225-229.
17. Myerson, R. B. (1980), Conference structures and fair allocation rules. Interna-
tional Journal of Game Theory 9, 169-182.
18. Owen, G. Game theory, 3rd Ed. Academic Press, San Diego.
19. Pham Do, K. H., Norde H. (2002), The Shapley value for partition function form
games. CentER DP 202-04, Tilburg University, The Netherlands.
20. Shapley, L. S. (1953), A value for n-person games. in Contributions to the Theory
of Games II, ed. by H.W. Kuhn and A.W. Tucker. Princeton 1953, 307-317.
21. Shapley, L.S. (1967), On balanced sets and cores. Naval Research Logistics Quar-
terly 14, 453-460.
22. Schmeidler, D. (1969), The nucleolus of a characteristic function game. SIAM
Journal on Applied Mathematics 17, 1163-1170.
23. Solymosi, T., Aarts, H., Driessen, T. (1998), On computing the nucleolus of a
balanced connected graph. Mathematics of Operations Research 23, 983-1009.
24. Thrall, R.M., Lucas, W. F. (1963), n-person games in partition function form.
Naval Research Logistics Quarterly X, 281-298.
25. Winter, E. (2002), The Shapley value. Handbook of Game Theory III, 2025-2054.
26. Young, H. P. (1985), Monotonic solutions of cooperative games. International Jour-
nal of Game Theory 14, 65-72.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
system icon system icon