跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 09:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱泓瑜
研究生(外文):Hung-Yu Chiou
論文名稱:光分碼多工和被動光擷取網路
論文名稱(外文):Optical Code Division Multiple Access and Passive Optical Network for Access Network
指導教授:馮開明
指導教授(外文):Kai-Ming Feng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:59
中文關鍵詞:光分碼多工擷取被動光網路擷取網路
外文關鍵詞:ODMAPONaccess network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主旨在研究擷取網路中的光分碼多工擷取和被動光網路,及其應用。在光分碼多工擷取之應用研究部分,主要利用增益開關(gain-switched)的Fabry-Perot雷射二極體, 在直調的資料調變方式來實現窄脈衝光源,以取代舊有利用兩個麥克詹達(Mech-Zender)調變器的方式,達到低成本的效益,並實際架設一套光分碼多工的編碼器,對我們所提出的光源進行編碼的動作,來驗證此光源在光分碼多工擷取系統中是否可行。
在被動光網路的應用研究部分,包含研究具有自我治癒能力、提供更多使用者的星-環-巴士架構的分波多工光纖-微波系統,期望所提出之系統能對舊有無保護系統達到改進的功效,第二個部分是提供自我治癒能力和區域網路實現的多重服務乙太網路,讓有線的乙太網路和無線網路結合,以因應目前對兩個系統高資料量的需求,並對舊有的光區域網路實現加以改進,而節省成本。
另外並提供可調式雙波長、多波長雷射的實作方法,希望能做為光分波多工系統的低成本多波長光源,主要是利用混合式放大器做為增益媒介的環狀光纖雷射,這種混合式的放大器是參鉺波導放大器和半導體光放大器所組成。最後並提出一種效能良好的長距離光纖布拉格光柵偵測系統,也是利用上述的混合式放大器來做為放大媒介,以期能對擷取網路提供光纖斷點偵測,進而未來能提供保護的功能。這些應用的原理與架構已詳盡的分析與實驗來驗證,上述的成果預期將有助於光纖通訊系統的發展。
In this thesis, we study the applications of optical code division multiple access and passive optical network for access network. The content of optical code division access applications is the realization of generating optical short pulse using gain-switched Fabry-Perot laser diode to replace the previous structure using two Mech-Zender modulators. We also construct a novel optical code division multiple access encoder to verify if the proposed light source is feasible in OCDMA system.
The content related to passive optical network applications includes WDM-PON: a star-ring-bus architecture for WDM fiber-wireless system with self-healing function, and Ethernet PON: a multi-service access network with self-healing function and local area network emulation. Besides, we experimentally realize a tunable dual-wavelength and a multi-wavelength fiber ring laser. Finally, we provide a long distance fiber Bragg gratings sensor system to detecting fiber fault in access network. These investigations and demonstrations will be useful in the field of communication systems.
Chinese Abstract………………………………………………...….…...I
English Abstract………………………………………………..……....II
Acknowledgements……………………………………………………III
Contents…………………………………………………………..……IV

Chapter 1: General Introduction 1
Chapter 2: Optical Code Division Multiple Access 3
2.1—Abstract of Optical Code Division Multiple Access………….….………….3
2.1.1 Introduction…………………………………………………………...3
2.1.2 The basic ideas behind optical code division multiplexing access…...4
2.1.3 Typical encoder and decoder of optical CDMA……………...………6
2.1.4 Potential advantages and challenges of optical CDMA systems……..9
2.1.5 Conclusion………………………………………………….……......11
2.2—An OCDMA Light Source using Directly Modulated Fabry Perot Laser
Diode in an External Injection Scheme…………………………………...12
2.2.1 Introduction……………...………………………………....………..12
2.2.2 Experiment and results…………………………………....…………13
2.2.3 OCDMA encoder……………………………………….……………16
2.2.4 Conclusion………………………………………………….………..17
Chapter 3: Passive Optical Network 18
3.1—Wavelength-Division-Multiplexing Passive Optical Network Using External Modulation Technique:
A Star-Ring-Bus Architecture for WDM Fiber-Wireless System…………18

3.1.1 Introduction……...…………………………………………………...18
3.1.2 Architecture description…………………...……………….………...19
3.1.3 Experimental setup and results………………………...…………….24
3.1.4 Conclusion…………………………………………………………...26
3.2—Ethernet Passive Optical Network Using Direct Modulation Technique:
Multi-Service Access Network with Self-Healing Function and Local Area
Network Emulation……………………………………...………………..27
3.2.1 Introduction…………………………………………………………27
3.2.2 Proposed architecture………………………………………...……..28
3.2.3 Experiment and results…………………………………..…...…..…30
3.2.4 Conclusions………………………………….……………………...32
Chapter 4: Multi-wavelength laser source 33
4.1—Tunable Dual-Wavelength Fiber Ring Lasers Using an S-band Erbium
Doped Fiber Amplifier…………………………………………………….33
4.1.1 Introduction………………………………………………………….33
4.1.2 Experiment and results…………………………………….………...34
4.1.3 Conclusion…………………………………………………………...37
4.2—Multi-wavelength Fiber Laser using S-band Erbium-Doped Fiber
Amplifier and Semiconductor Optical Amplifier………………………….38
4.2.1 Introduction………………………………………………………….38
4.2.2 Experiment and results……………………….……………………...39
4.2.3 Conclusion……………………………………...……………………43
Chapter 5: Optical sensor system 44
Long-distance fiber grating sensor system using a fiber ring laser with
EDWA and SOA…………………………………………………………………44
5.1 Introduction…………………………………………………………….…….44
5.2 Experiment and results……………………………………………….………46
5.3 Conclusion…………………………………………………………..………..51
Chapter 6: Summary for the Thesis 52
6.1 Conclusion……………………………………………………………………...52
6.1.1 An OCDMA light source using directly modulated Fabry Perot laser
diode in an external injection scheme…………………..…………..…...52
6.1.2 A star-ring-bus architecture for WDM fiber-wireless system……….…..52
6.1.3 Multi-service access network with self-healing function and local area network emulation………………………...………………….…………53
6.1.4 Tunable dual-wavelength fiber ring lasers using a S-band Erbium doped
fiber amplifier……………………………………………..…….…...…53
6.1.5 Multi-wavelength fiber laser using S-band Erbium-doped fiber amplifier
and semiconductor optical amplifier…………………….……...………53
6.1.6 Long-distance fiber grating sensor system using a fiber ring laser with
EDWA and SOA…………………………………………..………..…..54
6.2 Suggestions for the future work……………………………………………......54
Publications 55
References 56
[1] “OPTICAL CDMA”, Optics & Photonics NEWs, pp. 1047 April 2003
[2] Andrew Stok and Edward H. Sargent, University of Toronto, “Lighting the Local Area: Optical Code-Division Multiple Access and Quality of Service Provisioning ”, IEEE Network,, pp. 0890-8044,November/December 2000
[3] Habib Fathallah, Leslie A. Rusch, and Sophie LaRochelle, “Passive Optical Fast Frequency-Hop CDMA Communications System” IEEE Journal of Lightwave Technology vol.17
[4] D. Wei, S. Ayotte, W. Mathlouthi, S. Larochelle, and L. A. Rusch, “BER performance of an optical fast frequency-hopping CDMA system with multiple simultaneous users”, Optical Fiber Communications Conference (OFC2003), vol. 2, pp. 544-546, 2003.
[5] H. Fathallah, L. A. Rusch and S. Larochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE Journal of Lightwave Technology, vol. 12, pp. 397-405, 1999.
[6] X. Wang, K. L. Lee, C. Shu, and K. T. Chan, “Multiwavelength self-seeded Fabry Perot Laser with subharmonic pulse-gating for two-dimensional Fiber Optic-CDMA,” IEEE Photonics Technology Letters, vol. 13, pp. 1361-1363, 2001.
[7] W. R. Peng, P. C. Peng, W. P. Lin, K. C. Hsu, Y. C. Lai, and S. Chi “A cost-effective fast frequency-hopped code-division multiple access light source using self-seeded Fabry-Perot laser with fiber Bragg grating array,” IEEE Photonics Technology Letters, vol. 16, pp.2550-2552, 2004.
[8] X. Wang and K. T. Chan, “A sequentially self-seeding Fabry-Perot laser for two-dimensional encoding/decoding optical pulse,” IEEE Journal of Quantum Electronics, vol. 39, pp. 83-90, 2003.
[9] Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, "Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding," IEEE Photonics Technology Letters, vol. 9, pp. 1087-1089, 1997.
[10] M. Danielsen, "A theoretical analysis for gigabit/second pulse code modulation of semiconductor lasers", IEEE Journal of Quantum Electronics, vol. QE-12, pp. 657-660, 1976.
[11] M. Demokan, A. Nacaroglu, "An analysis of gain-switched semiconductor lasers generating pulse-code-modulated light with a high bit rate", IEEE Journal of Quantum Electronics, vol. QE-20, pp.1016-1022, 1984.
[12] M. Pauer, P. J. Winzer, and W. R. Leeb, "Bit error probability reduction in direct detection optical receivers using RZ coding," IEEE Journal of Lightwave Technology, vol. 19, pp. 1255-1262, 2001.
[13] X. Wang and K. T. Chan, "Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA," Optics Express, vol. 12, pp. 3334-3340, 2004.
[14] E. Inaty, H. M. H. Shalaby, P. Fortier, and L. A. Rusch, “Multirate optical fast frequency hopping CDMA system using power control,” IEEE Journal of Lightwave Technology, vol. 20, pp. 166-177, 2002.
[15] G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photonics Technology Letters, vol. 10, pp. 1650–1652, 1998.
[16] C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, " Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving," Journal of Lightwave Technology, vol. 21, pp. 3308-3315, 2003.
[17] W. P. Lin, M. S. Kao, and S. Chi, “A DWDM/SCM self-healing architecture for broad-band subscriber networks,” Journal of Lightwave Technology, vol. 21, pp. 319-328, 2003.
[18] T. J. Chan, C. K. Chan, L. K. Chen, F. Tong, "A Self-Protected Architecture for Wavelength Division Multiplexed Passive Optical Networks", IEEE Photonics Technology Letters, vol. 15, no. 11, pp. 1660-1662, 2003.
[19] W. R. Peng, P. C. Peng, Y. T. Hsueh, K.M. Feng, S. Chi, “Performance comparisons of external modulated hybrid analog-digital signals in electrical and optical domains”IEEE Photonics Technology Letters, vol. 17, pp. 2496-2498, 2005.
[20] E. Wong, C. J. Chae, “CSMA/CD-based ethernet passive optical network with optical internetworking capability among users”, IEEE Photonics Technology Letters, vol. 16, pp. 2195-2197, 2004.
[21] N. Nadarajah, E. Wong, A. Nirmalathas, “Automatic protection switching and LAN emulation in passive optical networks”, Electronics Letters, vol. 42, pp. 171-173, 2006.
[22] P. C. Peng, H. Y. Tseng, and S. Chi, “A Novel Fiber-Laser-Based Sensor Network with Self-Healing Function,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 275-277, 2003.
[23] J. Sun and W. Liu, "Multiwavelength generation by utilizing second-order nonlinearity of LiNbO3 waveguides in fiber lasers," Optics Communications, vol. 224, pp. 125-130, 2003.
[24] M. A. Arbore, Y. Zhou, G. Keaton, and T. J. Kane, “30 dB gain at 1500 nm in S-band Erbium-doped silica fiber with distributed ASE suppression,” in Proc. SPIE, Optical Devices for Fiber Communication IV, vol. 4989, pp. 47–52, 2003.
[25] L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” Journal of Lightwave Technology, vol. 19, pp.553-558, 2001.
[26] R. Slavik and S. LaRochelle, “Multiwavelength ‘single-mode’ erbium doped fiber laser for FFH-OCDMA testing,” Optical fiber communication conference (OFC2002), paper WJ3, pp. 245-246, 2002.

[27] H. L. An, X. Z. Lin, E. Y. B. Pun, H. D. Liu, "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter," Optics Communications, vol. 169, pp. 159-165, 1999.
[28] D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Optics Communications, vol. 228, pp. 295-301, 2003.
[29] G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photonics Technology Letters, vol. 14, pp. 606 –608, 2002.
[30] Y. W. Lee, J. Jung, and B. Lee, "Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter," IEEE Photonics Technology Letters, vol. 16, pp. 54-56, 2004.
[31] H. Dong, G. Zhu, Q. Wang, H. Sun, N. K. Dutta, J. Jaques, and A. B. Piccirilli, “Multiwavelength Fiber Ring Laser Source Based on a Delayed Interferometer,” IEEE Photonics Technology Letters, vol. 17, pp. 303-305, 2005.
[32] M. A. Arbore, Y. Zhou, G. Keaton, and T. J. Kane, “30 dB gain at 1500 nm in S-band Erbium-doped silica fiber with distributed ASE suppression,” in Proc. SPIE, Optical Devices for Fiber Communication IV, vol. 4989, pp. 47–52, 2003.
[33] C. H. Yeh, C. C. Lee, C. Y. Chen, and S. Chi, “S band gain-clamped erbium-doped fiber amplifier by using optical feedback method,” IEEE Photonics Technology Letters, vol. 16, pp. 90-92, 2004.
[34] S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y.Wu, and P. Xie, “Interleaver technology: comparisons and applications requirements,” Journal of Lightwave Technology, vol. 22, pp. 281–289, 2004.
[35] S. K. Liaw, K. P. Ho, K. Y. Hsu, S. Chi, "Proposed power-equalized EDFA modules using fiber Bragg gratings with various reflectivities," Fiber and Integrated Optics, vol. 18, pp. 297-304, 1999.
[36] J. E. Ford, J. A. Walker, “Dynamic spectral power equalization using micro-opto-mechanics,” IEEE Photonics Technology Letters, vol. 10, pp. 1440 - 1442, 1998.
[37] A. D. Kersey, M. A. Davis, H. J. Partrick, M. Leblance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” Journal of Lightwave Technology, vol. 15, pp. 1442-1463, 1997.
[38] L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” Journal of Lightwave Technology, vol. 19, pp.553-558, 2001.
[39] S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 13, pp. 350-351, 2001.
[40] Y. Yu, L. Lui, H. Tam, and W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photonics Technology Letters, vol. 13, pp. 702-704, 2001.
[41] H. L. An, X. Z. Lin, E. Y. B. Pun, H. D. Liu, "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter," Optics Communications, vol. 169, pp. 159-165, 1999.
[42] P.C. Becker, N.A. Olsson, J. R. Simpson, Erbium-Doped Fiber Amplifiers Fundamentals and Technology, Academic Press, 1997.
[43] N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources" IEEE Photonics Technology Letters, vol. 14, pp. 693 - 695, 2002.
[44] D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Optics Communications, vol. 228, pp. 295-301, 2003.
[45] K. C. Reichmann, P. P. Ianonne, M. Birk, N. J. Frigo, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, J. Philipsen, “An Eight-Wavelength 160-Km Transparent Metro WDM Ring Network Featuring Cascaded Erbium-Doped Waveguide Amplifiers,” IEEE Photonics Technology Letters, vol. 13, pp. 1130 - 1132, 2001.
[46] Y. Jaouën, L. D. Mouza, D. Barbier, J.-M. Delavaux, and P. Bruno, “Eight-Wavelength Er-Yb Doped Amplifier: Combiner / Splitter Planar Integrated Module,” IEEE Photonics Technology Letters, vol. 11, pp. 1105 - 1107, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文