|
[1] “OPTICAL CDMA”, Optics & Photonics NEWs, pp. 1047 April 2003 [2] Andrew Stok and Edward H. Sargent, University of Toronto, “Lighting the Local Area: Optical Code-Division Multiple Access and Quality of Service Provisioning ”, IEEE Network,, pp. 0890-8044,November/December 2000 [3] Habib Fathallah, Leslie A. Rusch, and Sophie LaRochelle, “Passive Optical Fast Frequency-Hop CDMA Communications System” IEEE Journal of Lightwave Technology vol.17 [4] D. Wei, S. Ayotte, W. Mathlouthi, S. Larochelle, and L. A. Rusch, “BER performance of an optical fast frequency-hopping CDMA system with multiple simultaneous users”, Optical Fiber Communications Conference (OFC2003), vol. 2, pp. 544-546, 2003. [5] H. Fathallah, L. A. Rusch and S. Larochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE Journal of Lightwave Technology, vol. 12, pp. 397-405, 1999. [6] X. Wang, K. L. Lee, C. Shu, and K. T. Chan, “Multiwavelength self-seeded Fabry Perot Laser with subharmonic pulse-gating for two-dimensional Fiber Optic-CDMA,” IEEE Photonics Technology Letters, vol. 13, pp. 1361-1363, 2001. [7] W. R. Peng, P. C. Peng, W. P. Lin, K. C. Hsu, Y. C. Lai, and S. Chi “A cost-effective fast frequency-hopped code-division multiple access light source using self-seeded Fabry-Perot laser with fiber Bragg grating array,” IEEE Photonics Technology Letters, vol. 16, pp.2550-2552, 2004. [8] X. Wang and K. T. Chan, “A sequentially self-seeding Fabry-Perot laser for two-dimensional encoding/decoding optical pulse,” IEEE Journal of Quantum Electronics, vol. 39, pp. 83-90, 2003. [9] Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, "Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding," IEEE Photonics Technology Letters, vol. 9, pp. 1087-1089, 1997. [10] M. Danielsen, "A theoretical analysis for gigabit/second pulse code modulation of semiconductor lasers", IEEE Journal of Quantum Electronics, vol. QE-12, pp. 657-660, 1976. [11] M. Demokan, A. Nacaroglu, "An analysis of gain-switched semiconductor lasers generating pulse-code-modulated light with a high bit rate", IEEE Journal of Quantum Electronics, vol. QE-20, pp.1016-1022, 1984. [12] M. Pauer, P. J. Winzer, and W. R. Leeb, "Bit error probability reduction in direct detection optical receivers using RZ coding," IEEE Journal of Lightwave Technology, vol. 19, pp. 1255-1262, 2001. [13] X. Wang and K. T. Chan, "Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA," Optics Express, vol. 12, pp. 3334-3340, 2004. [14] E. Inaty, H. M. H. Shalaby, P. Fortier, and L. A. Rusch, “Multirate optical fast frequency hopping CDMA system using power control,” IEEE Journal of Lightwave Technology, vol. 20, pp. 166-177, 2002. [15] G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photonics Technology Letters, vol. 10, pp. 1650–1652, 1998. [16] C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, " Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving," Journal of Lightwave Technology, vol. 21, pp. 3308-3315, 2003. [17] W. P. Lin, M. S. Kao, and S. Chi, “A DWDM/SCM self-healing architecture for broad-band subscriber networks,” Journal of Lightwave Technology, vol. 21, pp. 319-328, 2003. [18] T. J. Chan, C. K. Chan, L. K. Chen, F. Tong, "A Self-Protected Architecture for Wavelength Division Multiplexed Passive Optical Networks", IEEE Photonics Technology Letters, vol. 15, no. 11, pp. 1660-1662, 2003. [19] W. R. Peng, P. C. Peng, Y. T. Hsueh, K.M. Feng, S. Chi, “Performance comparisons of external modulated hybrid analog-digital signals in electrical and optical domains”IEEE Photonics Technology Letters, vol. 17, pp. 2496-2498, 2005. [20] E. Wong, C. J. Chae, “CSMA/CD-based ethernet passive optical network with optical internetworking capability among users”, IEEE Photonics Technology Letters, vol. 16, pp. 2195-2197, 2004. [21] N. Nadarajah, E. Wong, A. Nirmalathas, “Automatic protection switching and LAN emulation in passive optical networks”, Electronics Letters, vol. 42, pp. 171-173, 2006. [22] P. C. Peng, H. Y. Tseng, and S. Chi, “A Novel Fiber-Laser-Based Sensor Network with Self-Healing Function,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 275-277, 2003. [23] J. Sun and W. Liu, "Multiwavelength generation by utilizing second-order nonlinearity of LiNbO3 waveguides in fiber lasers," Optics Communications, vol. 224, pp. 125-130, 2003. [24] M. A. Arbore, Y. Zhou, G. Keaton, and T. J. Kane, “30 dB gain at 1500 nm in S-band Erbium-doped silica fiber with distributed ASE suppression,” in Proc. SPIE, Optical Devices for Fiber Communication IV, vol. 4989, pp. 47–52, 2003. [25] L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” Journal of Lightwave Technology, vol. 19, pp.553-558, 2001. [26] R. Slavik and S. LaRochelle, “Multiwavelength ‘single-mode’ erbium doped fiber laser for FFH-OCDMA testing,” Optical fiber communication conference (OFC2002), paper WJ3, pp. 245-246, 2002.
[27] H. L. An, X. Z. Lin, E. Y. B. Pun, H. D. Liu, "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter," Optics Communications, vol. 169, pp. 159-165, 1999. [28] D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Optics Communications, vol. 228, pp. 295-301, 2003. [29] G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photonics Technology Letters, vol. 14, pp. 606 –608, 2002. [30] Y. W. Lee, J. Jung, and B. Lee, "Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter," IEEE Photonics Technology Letters, vol. 16, pp. 54-56, 2004. [31] H. Dong, G. Zhu, Q. Wang, H. Sun, N. K. Dutta, J. Jaques, and A. B. Piccirilli, “Multiwavelength Fiber Ring Laser Source Based on a Delayed Interferometer,” IEEE Photonics Technology Letters, vol. 17, pp. 303-305, 2005. [32] M. A. Arbore, Y. Zhou, G. Keaton, and T. J. Kane, “30 dB gain at 1500 nm in S-band Erbium-doped silica fiber with distributed ASE suppression,” in Proc. SPIE, Optical Devices for Fiber Communication IV, vol. 4989, pp. 47–52, 2003. [33] C. H. Yeh, C. C. Lee, C. Y. Chen, and S. Chi, “S band gain-clamped erbium-doped fiber amplifier by using optical feedback method,” IEEE Photonics Technology Letters, vol. 16, pp. 90-92, 2004. [34] S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y.Wu, and P. Xie, “Interleaver technology: comparisons and applications requirements,” Journal of Lightwave Technology, vol. 22, pp. 281–289, 2004. [35] S. K. Liaw, K. P. Ho, K. Y. Hsu, S. Chi, "Proposed power-equalized EDFA modules using fiber Bragg gratings with various reflectivities," Fiber and Integrated Optics, vol. 18, pp. 297-304, 1999. [36] J. E. Ford, J. A. Walker, “Dynamic spectral power equalization using micro-opto-mechanics,” IEEE Photonics Technology Letters, vol. 10, pp. 1440 - 1442, 1998. [37] A. D. Kersey, M. A. Davis, H. J. Partrick, M. Leblance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” Journal of Lightwave Technology, vol. 15, pp. 1442-1463, 1997. [38] L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” Journal of Lightwave Technology, vol. 19, pp.553-558, 2001. [39] S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 13, pp. 350-351, 2001. [40] Y. Yu, L. Lui, H. Tam, and W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photonics Technology Letters, vol. 13, pp. 702-704, 2001. [41] H. L. An, X. Z. Lin, E. Y. B. Pun, H. D. Liu, "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter," Optics Communications, vol. 169, pp. 159-165, 1999. [42] P.C. Becker, N.A. Olsson, J. R. Simpson, Erbium-Doped Fiber Amplifiers Fundamentals and Technology, Academic Press, 1997. [43] N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources" IEEE Photonics Technology Letters, vol. 14, pp. 693 - 695, 2002. [44] D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Optics Communications, vol. 228, pp. 295-301, 2003. [45] K. C. Reichmann, P. P. Ianonne, M. Birk, N. J. Frigo, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, J. Philipsen, “An Eight-Wavelength 160-Km Transparent Metro WDM Ring Network Featuring Cascaded Erbium-Doped Waveguide Amplifiers,” IEEE Photonics Technology Letters, vol. 13, pp. 1130 - 1132, 2001. [46] Y. Jaouën, L. D. Mouza, D. Barbier, J.-M. Delavaux, and P. Bruno, “Eight-Wavelength Er-Yb Doped Amplifier: Combiner / Splitter Planar Integrated Module,” IEEE Photonics Technology Letters, vol. 11, pp. 1105 - 1107, 1999.
|