跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李漢祥
研究生(外文):Han-Hsiang Lee
論文名稱:具有主動式電力解耦合電路之光伏反流器之研發
論文名稱(外文):Development of PV Inverters with Active Power Dcoupling Circuit
指導教授:潘晴財陳俊才陳俊才引用關係
指導教授(外文):Ching-Tsai PanJiunn-Tsair Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:98
中文關鍵詞:光伏反伏器二倍頻瞬時功率電力解耦合電路
外文關鍵詞:PV Inverterinstantaneous second harmonic powerpower decoupling circuit
相關次數:
  • 被引用被引用:1
  • 點閱點閱:474
  • 評分評分:
  • 下載下載:110
  • 收藏至我的研究室書目清單書目收藏:0
光伏反流器乃為光伏系統中用來將太陽能板所產生的直流電力轉換成交流電力之重要介面。然而,光伏反流器固有的二倍頻瞬時功率現象會影響光伏系統最大功率輸出及輸出電流品質。在一般常見的解決方法中,是將一顆大電解電容並聯於光伏反流器之直流鏈上來消除系統中的二倍頻瞬時功率成份,使得光伏系統得以正常運作。但是電解電容相對於交流電容有著壽命較短及可靠度較低等缺點。有鑑於此,本論文主要研究目標為研發一種具有主動式電力解耦合電路之光伏反流器,可有效地將系統二倍頻瞬時功率消除,使得直流鏈之電容可採用電容值較小的交流電容,以改善傳統使用大電解電容之缺點。
本論文主要貢獻有下列三點:首先針對所採用之光伏反流器分析其中各組件之二倍頻瞬時功率分佈情形,同時探討其對光伏模組最大功率輸出控制及輸出電流波形品質之影響。第二點則基於對第一點深入研析後之了解,從而提出二種簡單的電力解耦合電路架構,以清除直流側之二倍頻電壓漣波,俾吾人可以使用交流電容器以取代傳統電解電容器,提升整個光伏系統之可靠度。第三點則採用德州儀器公司所開發的TMS320F2812數位信號處理器,完成一全數位化控制器,其中並包括所提電力解耦器之控制,以驗証所提電力解耦器之有效性。

關鍵字:光伏反流器、二倍頻瞬時功率、電力解耦合電路
In a photovoltaic system, an inverter is an essential interface to convert the direct power produced by solar cell into alternating power. However, the inherent instantaneous second harmonic power phenomenon of a PV system affects the Maximum Power Point Tracking (MPPT) and output current quality of the system. One most common solution is by connecting a large electrolytic capacitor to the DC link of PV inverters to reduce the effect of the instantaneous second harmonic power component. Yet, comparing with AC capacitors, the lifetime of an electrolytic capacitor is much shorter, and its reliability becomes much lower. Therefore, the major purpose of this thesis is to develop a PV inverter which contains an active power decoupling circuit to eliminate the instantaneous second harmonic power of the PV system effectively and to enable the use of an AC capacitor with lower capacitance value to substitute for the large DC link capacitor.
The contributions of this thesis may be summarized as follows. First, the distribution of the instantaneous second harmonic power of each element in the PV inverter adopted was analyzed and its influence on MPPT and output current quality of the PV module was also discussed. Second, based on the understanding of the first point which we have studied in depth, two simple power decoupling circuits were proposed to eliminate the second harmonic voltage ripple so that we can use an AC capacitor to replace traditional large electrolytic capacitor to enhance the reliability of the entire PV system. Third, a prototype is also constructed by using a TMS320F2812 DSP (developed by Texas Instrument Company) to verify the validity of the power decoupling circuit.
摘 要 …..………………………………………………………...I
英文摘要 ……………………………………………………………II
誌 謝 ……………………………………………………………III
目 錄 ..…………………………………………………………..IV
圖 目 錄 ..………………………………………………………… VI
表 目 錄 ……………………………………………………………X
第一章 緖 言…………………………………………………1
1.1 研究動機…………………………………………………1
1.2 相關文獻回顧……………………………………………1
1.3 本論文之貢獻…………………………………………....3
1.4 本論文之內容概述…………………………………… ...3
第二章 光伏反流器簡介及其問題探討……………………………..5
2.1 前言………………………………………………………. .5
2.2 光伏反流器之數學模式…………………………………. .5
2.3 二倍頻瞬時功率現象探討……………………………… 30
第三章 具有主動式電力解耦合電路之光伏反流器 …………… ..43
3.1 前言………………………………………………………. 43
3.2 現有文獻之消除二倍頻瞬時功率方法………………… .43
3.3 新型主動式二倍頻瞬時功率消除策略…………………. 48
3.4 新型光伏反流器之性能分析……………………………. 55
第四章 實體電路製作及實測結果 …………………………….... 78
4.1前言……………………………………………………….. 78
4.2硬體系統製作…………………………………………….. 78
4.3實測結果……………………………………………………84
第五章 結論 ………………………………………………………..90
參考文獻 ……………………………………………………………... 92
[1] S. B. Kjaer, J. K. Pedersen and F. Blaabjerg, “A Review of Single-
Phase Grid-Connected Inverters for Photovoltaic Modules,” IEEE Transactions on Industry Applications, vol. 41, No. 5 September/October 2005, pp. 1292-1306.

[2] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of Single-Phase Inverters for Small Distributed Power Generator: An Overview,” IEEE Transactions on Power Electronics, vol. 19, No. 5 September 2004, pp. 1305-1314.

[3] H. Watanabe, T. Shimizu and G. Kimura, “A Novel Utility Interactive Photovoltaic Inverter with Generation Control Circuit,” Industrial Electronics Society Conference, IECON , IEEE 24th Annual ,vol. 2, August 1998, pp. 721-725.

[4] M. Nagao and K. Harada, “Power Flow of Photovoltaic System using Buck-Boost PWM Power Inverter,” Power Electronics and Drive Systems, PEDS , Proceedings, IEEE International Conference on, vol. 1, May 1997, pp. 144-149.

[5] Y. C. Kuo, T. J. Liang and J. F. Chen, “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System,” IEEE Transactions on Industrial Electronics, vol.48, No. 3 June 2001, pp. 594-601.
[6] N. Kasa, T. Iida and L. Chen, “Flyback Inverter Controlled by Sensorless Current MPPT for Photovoltaic Power System,” IEEE Transactions on Industrial Electronics, vol.52, No. 4 August 2005, pp. 1145-1152.

[7] F. Belkacem, D. Diallo and G. A. Capolino, “Design and Control of A Low Power DC-AC Converter Fed by a Photovoltaic Array,” Industry Application Conference, IAS , IEEE 39th Annual Meeting, vol. 2, October 2004, pp. 1161-1164.

[8] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimizing Sampling Rate of P&O MPPT Technique,” Power Electronic Specialist Conference, PESC, IEEE 35th Annual, vol. 3, June 2004, pp. 1939-1944.

[9] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimizing Duty-cycle Perturbation of P&O MPPT Technique,” Power Electronic Specialist Conference, PESC, IEEE 35th Annual, vol. 3, June 2004, pp. 1945-1949.

[10] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, vol. 20, No. 4, July 2005, pp. 963-973.

[11] T. Y. Kim, H. G. Ahn, S. K. Park and Y. K. Lee, “A Novel Maximum Power Point Tracking Control for Photovoltaic Power System Under Rapidly Changing Solar Radiation,” International Symposium on Industry Electronics, ISIE, vol. 2, June 2001, pp. 1011-1014.

[12] S. Jain and V. Agarwal, “A New Algorithm for Rapid Tracking of Approximate Maximum Power Point in Photovoltaic Systems,” IEEE Power Electronics Letters, vol. 2, No. 1, March 2004 , pp. 16-19.

[13] C. T. Pan, J. Y. Chen, C. P. Chu and Y. S. Hung, “A Fast Maximum Power Point Tracker for Photovoltaic Power Systems,” Industrial Electronics Society, IECON, IEEE 25th Annual Conference, vol. 1, December 1999 , pp. 390-393.

[14] M. Liserre, R. Teodorescu and F. Blaabjerg, “Stability of Photovoltaic and Wind Turbine Grid-Connected Inverters for a Large Set of Grid Impedance Values,” IEEE Transactions on Power Electronics, vol. 21, No. 1, January 2006, pp. 263-272.

[15] T. Abeyasekera, C. M. Johnson, D. J. Atkinson and M. Armstrong, “Suppression of Line Voltage Related Distortion in Current Controlled Grid Connected Inverters,” IEEE Transactions on Power Electronics, vol. 20, No. 6, November 2005, pp. 1393-1401.

[16] E. Twining and D. G. Holmes, “Grid Current Regulation of a Three-Phase Voltage Source Inverter with an LCL Input Filter,” IEEE Transactions on Power Electronics, vol. 18, No. 3, May 2003, pp. 888-895.

[17] P. C. Loh and D. G. Holmes, “Analysis of Multiloop Control Strategies for LC/CL/LCL-Filtered Voltage-Source and Current-Source Inverters,” IEEE Transactions on Industry Applications, vol. 41, No. 2, March/April 2005, pp. 644-654.


[18] G. Shen, D. Xu, D. Xi and X. Yuan, “An Improved Control Strategy for Grid-Connected Voltage Source Inverters with a LCL Filter,” Applied Power Electronics Conference and Exposition, APEC, March 2006, IEEE 21st Annual , pp. 1067-1073.

[19] P. Teodorescu, F. Blaabjerg, U. Borup and M. Liserre, “A New Control Structure for Grid-Connected LCL PV Inverters with Zero Steady-State Error and Selective Harmonic Compensation,” Applied Power Electronics Conference and Exposition, APEC, IEEE 19th Annual , March 2004, , pp. 580-586.

[20] D. N. Zmood and D. G. Holmes, “Stationary Frame Current Regulation of PWM Inverters with Zero Steady State Error,” Power Electronic Specialist Conference, PESC , IEEE 30th Annual, vol. 2, July 1999, pp. 1158-1190.

[21] D. N. Zmood and D. G. Holmes, “Stationary Frame Current Regulation of PWM Inverters with Zero Steady State Error,” IEEE Transactions on Power Electronic, vol. 18, No. 3, May 2003, pp. 814-822.

[22] D. N. Zmood, D. G. Holmes and G. H. Bode, “Frequency-Domain Analysis of Three-Phase Linear Current Regulators,” IEEE Transactions on Industry Applications, vol. 37, No. 2, March/April 2001, pp. 601-610.
[23] T. Shimizu, K. Wada and N. Nakamura, “A Flyback-type Single Phase Utility Interactive Inverter with Low-Frequency Ripple Current Reduction on the DC Input for an AC Photovoltaic Module System,” Power Electronic Specialist Conference, PESC , IEEE 33rd Annual, vol. 3, June 2002, pp. 1483-1488.

[24] 廖常興,「市電並聯型之光伏風力混成型發電系統之研製」,清華大學碩士論文,九十三年七月。

[25] 唐宗賓,「市電並聯型光伏系統之研製」,清華大學碩士論文,八十九年七月。

[26] T. Brekken, Chris Henze, L. R. Moummeh and N. Mohan, “Utility-Connected Power Converter for Maximizing Power Transfer From a Photovoltaic Source While Drawing Ripple-Free Current,” Power Electronic Specialist Conference, PESC , IEEE 33rd Annual, vol. 3, June 2002, pp. 1518-1522.

[27] A. Kotsopoulos, J. L. Duarte and M. A. M. Hendrix, “Predictive DC Voltage Control of Single-Phase PV Inverters with Small DC Link Capacitance,” IEEE International Symposium on Industrial Electronics, ISIE’03, vol. 2, June 2003, pp. 793-797.

[28] G. F. Franklin, J. D. Powell and A. Emami-Naeini, “Feedback Control of Dynamic Systems 4/e,” Prentice Hall International Editions, 2002.

[29] S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” Power Electronics Specialist Conference, PESC , IEEE 34th Annual, vol. 3, June 2003, pp. 1183-1190.
[30] T. Hirao, T. Shimizu, M. Ishikawa and K. Yasui, “Discussion on Modulation Methods for Flyback-type Single-Phase Inverters with Enhanced Power Decoupling for Photovoltaic AC Module Systems,” International Power Electronics Conference, IPEC , April 2005.

[31] Y. Suh, V. Tijeras and T. A. Lipo, “A Nonlinear Control of the Instantaneous Power in dq Synchronous Frame for PWM AC/DC Converter under Generalized Unbalanced Operating Conditions,” Industry Application Conference, IAS , IEEE 37th Annual Meeting, vol. 2, October 2002, pp. 1161-1164.

[32] A. V. Stankovic and T. A. Lipo, “A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions,” IEEE Transactions on Power Electronics, vol. 16 , No. 5, September 2001, pp. 603-611.

[33] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-Mode Rectifier with Digital Robust Ripple Compensation and Current Waveform Controls,” IEEE Transactions on Power Electronics, vol. 19, No. 2 March 2004, pp. 560-566.

[34] N. Mutoh and T. Inoue, “A Controlling Method for Charging Photovoltaic Generation Power Obtained by a MPPT Control Method to Series Connected Ultra-Electric Double Layer Capacitors,” Industry Application Conference, IAS , IEEE 39th Annual Meeting, vol. 4 , October 2004, pp. 2264-2271.


[35] R. D. Middlebrook, “Small-Signal Modeling of Pulse-Width Modulated Switched-Mode Power Converters,” Proceedings of the IEEE, vol. 76, No. 4, April 1988, pp. 343-354.

[36] N. Mohan, T. M. Undeland and W. P. Robbins, “Power Electronics: Converters, Application and Design 3/e,” John Wiley & Sons, Inc. 2003.

[37] 阮昱霖,「整合型高性能三相升壓型交直流轉換器」,清華大學碩士論文,九十二年七月。

[38] 蘇奎峰,呂強,耿慶鋒,陳聖儉,「TMS320F2812原理與開發」,電子工業出版社,二○○五年一月。

[39] 張天錫,「電力電子學」,第三版,東華書局,九十三年九月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top