跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭人友
研究生(外文):Jen-Yu Cheng
論文名稱:自聚性砷化銦量子點之光譜特性研究
論文名稱(外文):The photoluminescence study of self-assembled InAs quantum-dot
指導教授:李俊奇李俊奇引用關係
指導教授(外文):Jiunn-Chyi Lee
學位類別:碩士
校院名稱:北台科學技術學院
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:47
中文關鍵詞:光激光譜量子點載子重新分佈效應電子與聲子散射效應
外文關鍵詞:photoluminescencequantum dotcarrier redistribution effectelectron-phonon scattering effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
在本論文中,我們藉由變溫及變功率光激光譜的量測,對自聚性砷化銦/砷化鎵量子點異質結構的載子遷移特性,做系統性的分析與討論。
利用有機金屬化學氣相磊晶系統所成長的砷化銦量子點樣品,由於在磊晶過程中,採用不同的成長中斷時間(growth interruption time),故使得二片樣品在量子點的大小、均勻度及密度上,均有所差異。配合變溫光激光譜的量測結果,我們發現光譜的半高寬及發光峰值能量,與樣品的成長中斷時間有密切的關係。成長中斷時間較短的樣品,由於均勻度較差,其光激光譜的半高寬隨著溫度的上升,而有明顯的下降趨勢,同時伴隨峰值的快速紅移。這是由於載子有足夠熱動能脫離量子點的束縛,經由濕層(wetting layer)做載子的重新分佈。當溫度持續升高,電子與聲子散射(electron–phonon scattering)效應逐漸明顯,使得光激光譜的半高寬又開始增加,峰值快速紅移的現象也略趨緩和。對於成長中斷時間較長的樣品來講,由於其均勻度較佳,所以在變溫的光激光譜量測中,我們並未發現半高寬隨溫度上升而有下降的趨勢,這是因為載子重新分佈效應對一個均勻度佳的樣品來講,其顯示出來的效果並不明顯,所以我們只能觀察到電子與聲子散射效應所表現出來的現象,也就是半高寬隨溫度上升而緩慢增加。
在變功率的光激光譜量測中,我們可更進一步解釋量子點載子遷移與能態密度的關係。在低入射功率時,由於量子點能態被佔據的比率較低,使得載子重新分佈效應更加明顯。當入射功率越低,半高寬的最低點也越小,而且峰值的紅移量也越大。從變溫與變功率的光激光譜量測與分析中,我們可以更深入了解量子點結構的載子遷移機制,並進而設計出更佳的元件。
In this thesis, we have systematically investigated the carriers transferring characteristics of self-assembled InAs/GaAs quantum dot (QD) heterostructures through the measurements of temperature-dependent and power-dependent photoluminescence (PL).
The InAs QDs samples were carried out by metal-organic chemical vapor deposition system. The dot density, and dot size uniformity of the samples are different because of their different growth interruption (GI) time during the growth process. According to the measured results, we identify that the full width at half maximum (FWHM) and the peak energy of PL spectra are highly related to the GI time of InAs samples. For the sample with shorter GI time, thanks to the lower dot size uniformity, the FWHM decreases apparently with temperature, accompanied by a quick redshift of the peak energy. It is attributed to the carriers thermally activate outside the dots and redistribute among dots via the wetting layer. As the temperature increases further, the FWHM increases and quick-redshift of peak energy slows down because the electron-phonon scattering becomes important. For sample with longer GI time, which resulting in the better uniformity of this sample, the unusual decrease of FWHM is not observed in the measurement of the temperature dependent PL spectra. Considering the better uniformity of the sample, the effect of carrier redistribution on PL spectra is unapparent. Therefore, the FWHM increases gradually with temperature.
In the measurement of power-dependent PL spectra, the correlation between the carriers transferring and density of state (DOS) in QDs are discussed in depth. With lower incident excitation power, the lower filled portion of DOS leading to the evident carrier redistribution effect in QDs, thus the decrease of FWHM and the redshift of peak energy both increase with decreasing incident power. According to the measurement and analysis of the temperature-dependent and power-dependent PL spectra, the carriers transferring mechanism of QDs heterostructures is well explained and is expected to improve the design of optoelectronic devices.
中文摘要...................................................i
英文摘要.................................................iii
目錄 ..................................................vi
圖目錄 ................................................viii
表目錄 ...................................................x
第一章 緒論...............................................1
1.1 概述...............................................1
1.2 研究動機............................................3
第二章 基本原理............................................4
2.1 量子點特性..........................................4
2.2 量子點成長機制.......................................5
2.3 文獻探討............................................6
第三章 實驗步驟與方法......................................11
3.1 樣品介紹...........................................11
3.2 光激發光原理........................................11
3.3 光激發光(Photoluminescence,PL)量測系統儀器設備介紹....12
第四章 實驗結果與討論......................................17
4.1 低溫光激光譜分析.....................................17
4.2 變溫光激光譜分析.....................................18
4.2-1 變溫光激光譜半高寬分析................................18
4.2-2 變溫光激光譜放光峰值分析...............................19
4.3 變功率光激光譜分析....................................21
4.3-1 變功率光激光譜半高寬分析...............................21
4.3-2 變功率光激光譜放光峰值分析.............................22
第五章 結論................................................39
參考文獻....................................................43
作者簡介....................................................47
〔1〕 A. D. Armour, M. P. Blencowe, and Y. Zhang, “Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor”, Phys. Rev. B, 69, pp.125313-1~125313-15, 2004.

〔2〕 T. Fujisawa, T. Hayashi, Y. Hirayama, H.D. Cheong, and Y.H. Jeong,“Electron counting of single-electron current”, Appl. Phys. Lett. 84, pp.2343-2345, 2004.

〔3〕 Richard P. Mirin, Arthur C. Gossard, John E. Bowers,”Characterization of InGaAs quantum dot lasers with a single quantum dot layer as an active region”, Physical E 2 pp.738-742, 1998.

〔4〕 T. Ogawa, M. Akabori, J. Motohisa and T. Fukui, “Effect of growth interruption time and growth temperature on the natural formation of InGaAs/AlGaAs quantum disk structures on GaAs (311) B substrates”, J. Appl. Phys. 87, pp.745-749, 2000.

〔5〕 D. Ochoa, A. Polimeni, M. Capizzi, A. Patane, M. Henini, L. Eaves, and P.C. Main, “Emission energy and polarization tuning of InAs/GaAs self-assembled quantum dots by growth interruption”, J. Crystal. Growth 251, pp.192-195, 2003.

〔6〕 M. Colocci, F. Bogani, L. Carraresi, and R. Mattolini, “Growth patterns of self-assembled InAs quantum dots near the two- dimensional to three- dimensional transition”, Appl. Phys. Lett. 70, pp.3140-3142, 1997.

〔7〕 Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yang, B. Z. Zheng, and J. Z. Xu, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates”, Phys. Rev. B. 54, pp.11528-11531, 1996.

〔8〕 Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/ GaAs quantum dot superlattices with large thicknesses”, J. Appl. Phys. 82, pp.4489-4492, 1997.

〔9〕 Ming-Chin Chen, Hao-Hsiung Lin, and Chih-Wei Shie, ”self- organized InAs/GaAs quantum dots grown by gas source molecular beam epitaxy”, J. Appl. Phys. 83, pp.3061-3064, 1998.

〔10〕 I. V. Kudryashov, V. P. Evtikhiev, V. E. Tokranov, E. Yu. Kotelnikov, A. K. Kryganovskii, A. N. Titkov, “Effect of GaAs (001) surface misorienation on the emission from MBE grown InAs quantum dots”, J. Crystal. Growth 201, pp.1158-1160, 1999.

〔11〕V. P. Evtikhiev, V. E. Tokranov, A. K. Kryganovskii, A. M. Boiko, R. A. Suris, A. N. Titkov, “Characteristics of the InAs quantum dots MBE grown on the vicinal GaAs (001) surfaces misoriented to the [010] direction”, J. Crystal. Growth 201, pp.1154-1157, 1999.

〔12〕G. G. Tarasov, Yu. I. Mazur, Z. Ya. Zhuchenko, A. Maaßdorf, D. Nickel, J. W. Tomm, H. Kissel, C. Walther, and W. T. Masselink “Carrier transfer in self-assembled coupled InAs/GaAs quantum dots”, J. Appl. Phys. 88, pp.7162-7170, 2000.

〔13〕S. Sanguinetti, M. Padovani, M. Gurioli, E. Grilli, and M. Guzzi, “Carrier transfer and photoluminescence quenching in InAs/GaAs mutilayer quantum dot s”, Appl. Phys. Lett. 77, pp.1307-1309, 2000.

〔14〕Tae-Won Kang, Jae-Eung Oh, “Abnormal temperature-dependent photoluminescence characteristics of stacked InAs self-assembled quantum dot structures grown by molecular beam epitaxy”, J. Crystal Growth 227, pp.1039-1043, 2003.

〔15〕S. Sanguinetti, M. Padovani, M. Gurioli, E. Grilli, and M. Guzzi, “Carrier transfer and photoluminescence quenching in InAs/GaAs multilayer quantum dots”, Appl. Phys. Lett. 77, pp.1307-1309, 2000.

〔16〕Jin Soo Kim and Phil Won Yu, Jae-Young Leem, Minhyon Jeon, Sam Kyu Noh, Joo In Lee, Gu Hyun Kim, Se-Kyung Kang, Jong Su Kim and Song Gang Kim, ” Effects of high potential barrier on InAs quantum dots and wetting layer”, J. Appl. Phys. 91, pp.5055-5059, 2002.

〔17〕Jin Soo Kim, Jin Hong Lee, Sung Ui Hong, Won Seok Han, Ho- Sang Kwack, Chul Wook Lee, and Dae Kon Oh, “Manipulation of the structural and optical properties of InAs quantum dots by using various InGaAs structures”, J. Appl. Phys. 94, pp.6603-6606, 2003.

〔18〕X. Q. Zhang, Sasikala Ganapathy, Hidekazu Kumano, Kasturi Uesugi, and Ikuo Suemune, “Photoluminescence study of InAs quantum dots embedded in GaNAs strain compensating layer grown by metalorganic-molecular-beam epitaxy”, J. Appl. Phys. 92, pp.6813-6318, 2002.

〔19〕Dieter Bimberg, Marius Grundmann and Nikolai N. Ledentsov, “Quantum Dot Heterostructures”, 1999.

〔20〕J. Z. Wang, Z. Yang, and C. L. Yang, “Photoluminescence of InAs quantum dots grown on GaAs surface”, Appl. Phys. Lett. 77, pp.2837-2839, 2000.

〔21〕D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, “Exciton localization and temperature stability in self-organized InAs quantum dots”, Appl. Phys. Lett. 68, pp.205-207, 1996.

〔22〕Hao Lee, Weidong Yang, and Peter C. Sercel, “Temperature and excitation dependence of photoluminescence line shape in InAs/ GaAs quantum-dot structures”, Phys. Rev. B55, pp.9757-9762, 1997.

〔23〕H. S. Lee, J. Y. Lee, T. W. Kim, “Dependence of the optical properties on the temperatures in multiple-stacked InAs/GaAs quantum dots grown on GaAs (001) substrates”, J. Crystal. Growth 258, pp.256-260, 2003.

〔24〕D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, “Exciton localization and temperature stability in self-organized InAs quantum dots”, Appl. Phys. Lett. 68, pp.205-207, 1996.

〔25〕J. Z. Wang, Z. Yang, and C. L. Yang, “Photoluminescence of InAs quantum dots grown on GaAs surface”, Appl. Phys. Lett. 77, pp.2837-2839, 2000.

〔26〕Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence”, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top