跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭敬仲
研究生(外文):Ching-Chung Peng
論文名稱:摻鉺光纖放大器之研製與特性量測
論文名稱(外文):Fabrication and Characteristics Measurement of Erbium Doped Fiber Amplifiers
指導教授:林螢光林螢光引用關係
指導教授(外文):Yin-Kwang Lin
學位類別:碩士
校院名稱:北台科學技術學院
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:60
中文關鍵詞:摻鉺光纖放大器
外文關鍵詞:Erbium Doped Fiber Amplifiers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:1
本論文設計並製作一摻鉺光纖放大器,所使用之驅動IC能精確的控制雷射半導體電流或穩定的控制光電二極體電流。溫控IC可應用極穩定的熱電溫度,來控制不同的電路迴路,它用可調整偵測器的偏壓電流跟直接操作電熱調節器的錯誤增益,使溫度能精確的維持在安全的區域。
以所研製之摻鉺光纖放大器進行特性量測,使用寬頻光源和高密度多工分波器(DWDM)是一個簡單而準確的量測增益值和雜訊指數的方式,此方式將濾出的多波長光來取代多個單頻半導體雷射以減少輸入光來源之高昂費用,增益值和雜訊指數之計算是來自線性的輸入和輸出功率,利用此線性關係並結合最小方差法得到摻鉺光纖放大器的特性參數,輸入在1530nm-1560nm不同功率之訊號,Gain 的平均差為0.32dB而NF的平均差為0.09dB,再以自製的摻鉺光纖放大器為量測的寬頻光源,輸入在1530nm-1560nm不同功率之信號,Gain 的平均差為0.35dB而NF的平均差為0.1dB。
In this thesis we design and implement an Erbium Doped Fiber Amplifier(EDFA)with a constant driving IC and a temperature control IC. The IC driver can maintain precision laser diode current or stable photodiode current regulation using electronics that are compatible with any laser diode. The temperature control IC is an analog PI (Proportional, Integral) control loop hybrid circuit for use in ultrastable thermoelectric temperature control applications. This IC maintains precision temperature regulation using an adjustable sensor bias current and error amplifier circuit that operates directly with thermistors.
A simple and accurate characteristics measurement of the multi-wavelength optical amplifiers with an ASE source and a DWDM multiplexer is proposed. The filtered and multiplexed light is used to replace the light multiplexed from the DFB lasers for reducing the cost of the input optical sources. The gain and noise figure are determined from the linear fitting of the input and output spectral power densities. The experimental results excellently match the data obtained by the time-domain-extinction method. When the In-Lab made EDFA as ASE source we obtain gain and noise figure of branded EDFA. The differences between the two method less than 0.35dB and 0.1dB are obtained respectively. While the In- Lab made EDFA is used as a measured unit, we obtain gain and noise figure of In-Lab made EDFA. The discrepancies is less than 0.32dB and 0.09dB.
目 錄
中文摘要

……………………………………………………………………

i
英文摘要 …………………………………………………………………… ii
誌謝 …………………………………………………………………… iii
目錄 …………………………………………………………………… iv
圖目錄 …………………………………………………………………… vi
第1章 緒論……………………………………………………………… 1
1.1 前言……………………………………………………………… 1
1.2 研究動機…………………………………………………………… 1
1.3 本文架構…………………………………………………………… 2
第2 章 摻鉺光纖放大器理論基礎………………………………………… 4
2.1 主要放大器種類……………………………………………………… 4
2.2 雷射原理…………………………………………………………… 6
2.3 摻鉺光纖放大器的工作原理………………………………………… 7
2.4 摻鉺光纖放大器的架構……………………………………………… 15
2,5 摻鉺光纖放大器之設計參數………………………………………… 19
第3 章 摻鉺光纖放大器之研製……………………………………………… 22
3.1 泵激光源………………………………………………………… 22
3.1.1 雷射穩定電流驅動器………………………………………………… 22
3.1.2 雷射穩定溫度控制器………………………………………………… 24
3.1.3 整合雷射穩定電流驅動及溫度控制電路之製作…………………… 29
3.2 泵激光源與光學元件的組合………………………………………… 33
3.2.1 分波多工器…………………………………………………………… 34
3.2.2 光隔離器……………………………………………………………… 34
3.3 ASE光源的特性量測………………………………………………… 37
第四章 多波長放大器之量測………………………………………………… 39
4.1 EDFA之重要參數…………………………………………………… 39
4.2 現有量測技術………………………………………………………… 40
4.3 低長本量測系統……………………………………………………… 43
4.4 量測特性參數………………………………………………………… 44
第五章 結論…………………………………………………………………… 51
5.1 結論…………………………………………………………………… 51
5.2 未來研究方向………………………………………………………… 52
參考文獻 ………………………………………………………………………… 53
附錄 ………………………………………………………………………… 56
作者簡介 ………………………………………………………………………… 60
[1] R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Payne, “High-gain rear-earth doped fiber amplifier at 1.54 µm,” in Optical Fiber Communication Conference, Vol. 3, 1987 OSA Technical Digest Series, (Optical Society of America, Washington, DC., 1987) p.167.
[2] E. Desurvier, J. R. Simpson, and P. C. Becker, Opt. Lett. 12, 888, 1987.
[3] 林螢光 編著 光電子學-原理、元件與應用
[4] Becker, P. C., Olsson, N. A., and Simpson, J. R., Erbium-Doped Fiber Amplifier Fundamentals and Technology, Academic Press, London, pp.110-149, 1999.
[5] Wysocki, P. F., Digonnet, M. J. F., Kim, B. Y., and Shaw, H. J.,“Characteristic of Erbium-Doped Superfluorescent Fiber Source for Interferometric Sensor Applications,” Journal of Lightwave Technology, Vol. 12, No. 3, pp.550-567, 1994.
[6] Wang, L. A. and Chen, C. D., “Stable and Er-Doped Superfluorescent Fiber Sources Using Double-Pass Backward Configuration,” Electron Letters, Vol. 32. No. 19, pp.1815-1817, 1996.
[7] Wang, L. A. and Su, C. D.,“Modeling of a Double-Pass Backward Er-Doped Superfluorescent Fiber Sources for Fiber-Optic Gyroscope Applications,” Journal of Lightwave Technology, Vol. 17, No 11, pp.2307-2315, 1999.
[8] R. I. Laming, S. B. Poole, and E. J. Tarbox, “Pumping excited-state absorption in erbium-doped fibers,” Opt. Leet., Vol.13, pp.1084-1086, 1988.
[9] Wysocki, P. F., Digonnet, M. J. F., and Kim, B. Y., “Wavelength Stability of a High-Output, Broadband, Er-Doped Superfluorescent Fiber Source Pump Near 980nm,” Optics Letters, Vol. 16, No. 12, pp.961-962, 1991.
[10] Hall, D. C. and Burns, W. K., “Wavelength Stability Optimisation in Er3+-Doped Superfluorescent Fiber Source,” Electron Letters, Vol. 30. No. 8, pp.653-654, 1994.
[11] Laming, R. I., Poole, S. B., and Tarbox, E. J., “Intermediate Excited-State Absorption in Erbium-Doped fiber Strongly Pumped at 980 nm,” Optics Letters, Vol. 16, No 24, pp.1976-1978, 1991.
[12] Anritsu Inc., ME7890C/MF9619C Optical Amplifier TestSystem /Optical Modulator Operation Manual (2001).
[13] Sanjay Gupta and Li Qian,”Measuring Gain and Noise Figure of Erbium-Doped Fiber Amplifiers Using a Broad-Band Source and a Transmission Filter,”IEEE Photon.Technol.Lett.,vol16,NO.9,SEPTEMBER 2004
[14] Richardson, R. E., Jr., "Quiescent Operating Point Shift in Bipolar Transistors with AC Excitation," IEEE Journal of Solid-State Circuits, Vol. 14, pp. 1087-1094 (1979).
[15] Wagener, J. L., Digonnet, M. J. F., and Shaw, H. J.,“A High-Stability Fiber Amplifier Source for the Fiber Optic Gyroscope,” Journal of Lightwave Technology, Vol. 15, No 9, pp.1689-1694, 1997.
[16] M. C. Farries “Excited-State Absorption and Gain in Erbium-Fiber Amplifiers between 1.05 and 1.35 m,” IEEE Photonics Technology Letters, Vol. 3, No. 7, July, 1991.
[17] E. Desurvire. “Erbium-Doped Fiber Amplifiers for New Generations of Optical Communication Systems,” Optical Photonics News 2, No. 1, pp. 6-11, Jan.1991.
[18] Desurvire, E., Giles, C. R., Simpson, J. R., and Zyskind, J. L., “Efficient Erbium-Doped Fiber Amplifier at a 1.53μm Wavelength with a High Output Saturation Power,” Optics Letters, Vol. 14, No. 22, pp. 1266-1268, 1990.
[19]H.Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er+3 –doped fiber amplifier for a WDN signal in the 1.57-1.60- m wavelength region,” IEEE photon. Technol. Lett., vol. 9, no. 5, pp. 596-598,1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top