跳到主要內容

臺灣博碩士論文加值系統

(3.234.211.61) 您好!臺灣時間:2021/10/18 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳亮君
研究生(外文):Laing-Chun Chen
論文名稱:國中小學生數學胚騰覺察能力發展概況之探討
論文名稱(外文):Development of the Computerized Assessment and Learning Assistive Devices on Mathematics Pattern Awareness
指導教授:洪碧霞洪碧霞引用關係
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:測驗統計研究所
學門:教育學門
學類:教育測驗評量學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:胚騰學習輔具數學學習電腦化測驗
外文關鍵詞:pattern awarenessassistive deviceintervention effectmathematics learningcomputerized test
相關次數:
  • 被引用被引用:17
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在研發電腦化數學胚騰覺察測驗(MPAT)及及其對應的學習輔具,以國小六年級及國中一年級學生共632人為常模樣本,描述國中小學生數學胚騰覺察能力的現況,檢視自編測驗信效度初步資訊,並探討電腦化學習輔具對胚騰學習弱勢學生的協助效益。就不同的內涵層面來看,邏輯胚騰層面的試題的平均難度較低,數字胚騰層面次之,複合胚騰層面試題的平均難度最高。各內涵層面間呈現合理的中度正相關約0.5左右,大致符合構念的成分複雜度結構。MPAT與關聯變項-工作記憶、空間感、數量形覺察能力、數學能力等亦呈現合理的中度正相關,其值在0.5到0.6左右。MPAT對資優學生的區辨正確率達85%左右。
本研究以試題難度值.5為截斷點將測驗劃分為兩難度層次,界定學生在各難度層次平均答對率0.6為通過標準,作為學生表現水準分類之依據,即以能力值0.2、1.2為決斷點,將學生歸類於三個表現水準:未達水準一,水準一及水準二。目前國中一年級學生在三個表現水準的比例依序為59.4%、33.7%、6.9%。本研究結果顯示七年級的學生表現顯著優於六年級學生,年級變項對於學生數學胚騰覺察能力表現的變異解釋量約在5%左右。資優學生的表現顯著優於常模學生,能力組別變項的變異解釋量( )為29%。男、女學生在數學胚騰覺察能力的表現並無顯著差異。
本研究在實行電腦化數學胚騰學習輔具後,發現實驗組與控制組在後測的平均能力值皆高於前測,以前測為共變數進行變異數分析後,顯示實驗組在電腦化數學胚騰學習輔具介入後,數學胚騰覺察能力明顯優於控制組,且組間 =11%。因此可見對於低表現水準的學生而言,電腦化數學胚騰學習輔具的介入效益值得以更大樣本進行進一步的交叉檢核探討。
Pattern awareness is a new and important goal in mathematics education. The major purpose of this study is to develop the computerized mathematics pattern awareness test (MPAT) to investigate the related issues of students’ performances. There are two complexity levels (one factor and two factors) and three facets in MPAT (logic, number, and composite patterns). Three computerized learning assistive devices were also developed to investigate the intervention effects for students who did not perform well. Six hundreds and thirty two 6th and 7th graders were selected to take the MPAT. The correlation coefficients between MPAT and concurrent related variables (mathematics ability, spatial sense, working memory and school math are around) are around .5 to .6. There were around 59% 7th below the basic level. Only 7% students reach mastery level. In other words, the MPAT is too difficult for most of the 6th and 7th graders. There were significant differences between grades (5% variances accounted) on MPAT. The differences between the gifted students and normal class students were relatively large (29% variances accounted) on MPAT. The author suggested the MPAT can be considered as a supplemental instrument for screening mathematics gifted students. The intervention effect was significant. The differences between the experimental group and control group is substantial (11% variances accounted on MPAT). The result suggested most students do not have sufficient exploring experiences on mathematics patterns. The intervention effects of the computerized learning assistive devices on mathematics pattern awareness will be worth examining with a larger sample size.
目 次 ……………………………………………………… Ⅰ
表 次 ……………………………………………………… Ⅱ
圖 次 ……………………………………………………… Ⅳ
第壹章 緒論
第一節 研究動機與目的…………………………………… 1
第二節 研究問題……………………………………… 4

第貳章 文獻探討
第一節 胚騰的內涵及重要性…………………… 5
第二節 胚騰覺察能力的教學與評量……………… 10
第三節 電腦化胚騰學習輔具………………………… 17

第參章 研究設計與方法
第一節 研究流程………………………………… 19
第二節 研究樣本………………………………………… 22
第三節 研究工具…………………………………………… 25
第四節 資料處理與分析…………………………………… 48

第肆章 結果與討論
第一節 MPAT心理計量特徵探討………………………… 49
第二節 學生在MPAT表現概況之探討………………… 56
第三節 電腦化數學胚騰學習輔具效益之探討………… 68

第伍章 結論與建議
第一節 結論……………………………………… 73
第二節 建議……………………………………… 75

參考書目 ……………………………………………………… 76
附錄一 MPAT登入系統及試題列表示意畫面………… 80
附錄二 MPAT第一次試用晤談表…………………… 81
附錄三 MPAT第一次試用晤談表學生作答實例………… 82
附錄四 電腦化胚騰學習輔具學習單…………………… 83
壹、中文部份:
洪碧霞、林素微、林宜樺、陳沅、陳靜姿(民92)。以多元化的數學評量支持學生的學習進展,教育研究資訊,11(6),33-64。
台北市立興雅國民中學(民92)。胚騰(Pattern)就在你身邊-不一樣的數學步道。未出版。
教育部(民92)。國民中小學九年一貫課程綱要數學學習領域。台北:教育部。
曹亮吉(民92)。阿草的數學聖杯。台北:天下文化。
黃敏晃(民89)。規律的尋求。台北:心理。
蔡信行(譯)(民89)。I. Stewart著。生物世界的數學遊戲。台北:天下文化。
蔡承志(譯)(民93)。W. David著。胚騰-無所不在的模式。台北:天下文化。
葉李華(譯)(民85)。I. Stewart著。大自然的數學遊戲。台北:天下文化。
屠耀華、鄭建勳(譯)(民89)。英國S.M.P.中學教程。台北:九章。
貳、英文部分:
Alan, S.(1995). Pattern Pattern Based Reason.〔On-line〕.Available: http://whyslopes.com/volumela/ch01.html
Alex, B. (1998). Between Arithmetic and Algebra.〔On-line〕.Available: http://www.maa.org/editorial/knot/between.html
Arthur, W.(1997). AIMS Plans Pattern-Based Math Curriculum〔On-line〕.Available: http://www.aimsedu.org/Documents/Pattern/Pattern.html.
Berlin, D. F., & Hillen, J. A. (1994). Making connections in math and science: Identifying student outcomes. School Science and Mathematics, 94(6), 283-290.
Chambers, D. L. (1994). The right algebra for all. Educational Leadership, 51(6), 85-86.
Coburn, T., Bushey, B., Holton, L., Latozas, D., Mortimer, D., & Shotwell, D. (1993). Patterns: Curriculum and evaluation standards for school mathematics addenda series, grades K-6. Reston, VA: NCTM.
Coxford, A. F. (1995). The case for connection. Connecting mathematics across the curriculum (1995 NCTM Yearbook). Reston, VA: National Council of Teachers of Mathematics.
David, N. (2001). A comparison of the National Assessment of Educational Progress (NAEP), the Third international Mathematics and Science Study Repeat (TIMSS-R), and the Program for International Student Assessment (PISA), NCES 2001-7. Washington: U.S. Department of Education, National Center for Education Statistics.
Deal, D. (1994). A look at project AIMS. School Science and Mathematics, 94 (1), 11-14.
Devlin, K. (1994). Mathematics: The science of patterns. New York, NY: Scientific American Library.
Forman, S. L., & Steen, L. A. (1995). Mathematics for Work and Life. In I. Carl (Ed.), Seventy-five years of progress: Prospects for school mathematics (pp.336 -358 ). Reston, VA: NCTM.
Heid, M., Choate, J., Sheets, C., & Zbiek, R. M. (1995). Algebra in a technological world: Curriculum and evaluation standards for school mathematics addenda series, grades 9-12. Reston, VA: NCTM.
Howden, H. (1989). Patterns, relationships, and functions. In T. Rowen & L. Morrow (Eds.), Implementing the K-8 curriculum and evaluation standards: Readings from the Arithmetic Teacher (pp.236 -249 ). Reston, VA: NCTM.
Kieran, C., & Chalouh, L. (1993). Prealgebra: The transition from arithmetic to algebra. In D. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 159-172 ). Reston, VA: NCTM.
Klotz, E.(1991). Visualization in geometry : A case study of a multimedia mathematics education project. Visualization in teaching and learning mathematics. Reston, VA: NCTM.
Liu, T. C., Ko, H.W., Wang, Y., Wei, L.H., & Chan, T.W. (2003, June). Applying wireless and mobile technology to enhance productive interaction. In IEEE, WMTE, Hong Kong.

Malcom, S. (1997). Making mathematics the great equalizer. In L. A. Steen (Ed.), Why numbers count: Quantitative literacy for tomorrow’s America (pp. 171-191 ). New York, NY: The College Board.
Mathematical Sciences Education Board. (1990). Reshaping school mathematics: A philosophy and framework for curriculum. Washington, D.C.: National Research Council.
National Assessment Governing Board. (2001). NAEP framework project: Mathematics framework for 2005. Washington, D.C.: U.S. Department of Education.
National Assessment Governing Board. (2002). Mathematics framework project: Mathematics framework for the 2003 . Washington, D.C.: U.S. Department of Education.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics. (1991). Commission on Teaching Standards for School Mathematics. Professional standards for teaching mathematics. Reston, VA: Author.
National Council of Teacher of Mathematics (2000). Principles and Standards for School Mathematics〔On-line〕.Available: http://www.nctm.org
Packer, A. (1997). Mathematical competencies that employers expect. In L. A. Steen (Ed.), Why numbers count: Quantitative literacy for tomorrow’s America (pp.56 -69 ). New York, NY: The College Board.
Steen, L. (1990). Pattern. In L. Steen (Ed.), On the shoulders of giants: New approaches to numeracy (611-616 ). Washington, D.C.: National Academy Press.
Vance, J. (1998). Number Operations from an Algebraic Perspective. Teaching Children Mathematics, 4(1), 282-285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top