跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊舜如
研究生(外文):Shun-ju Chuang
論文名稱:國小高年級學童代數思考能力測驗研發之研究
論文名稱(外文):A study of the development of the test of algebraic thinking ability for grade 5-6
指導教授:凃柏原凃柏原引用關係
指導教授(外文):Bor-Yaun Twu
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:測驗統計研究所
學門:教育學門
學類:教育測驗評量學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:121
中文關鍵詞:能力代數思考測驗
外文關鍵詞:abilityalgebraic thinkingtest
相關次數:
  • 被引用被引用:14
  • 點閱點閱:632
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:5
本研究之目的是發展乙份代數思考能力測驗以了解國小高年級學童之代數思考能力表現概況。研究結果發現,代數思考能力測驗具備良好之信、效度證據。
研究顯示,全測驗試題難度偏難,但具備相當的鑑別度。數量樣式分測驗試題難度較數量關係分測驗為高,但鑑別度相較之下亦較高,其結果亦顯示較難之試題能讓學童使用較高層次的程序性知識解題。根據各分測驗間呈現適合的中度正相關,推論各內容領域間測量之構念成分,與因素分析之結果相符。
不同認知類型表現結果顯示,數量樣式推理與符號推理之難度偏難,但鑑別度頗高;數量關係推理之難度與鑑別度尚稱適中;由測驗之分配可知學童於三認知類型之表現分散。根據各認知類型間相關之結果顯示各認知層面間皆呈現中度正相關,整體而言,大致符合構念的成分結構,可作為建構效度證據的參考依據。
根據學童表現,歸納出5點程序性知識表徵方式特徵:(1) 學童以符號思考時,不習慣進行運算;(2) 以符號列式,直接列出不含等號的多項式,不進行運算;(3) 解含有未知數符號之算式時,傾向以移項法來思考;(4) 解括號位於等號左邊之算式時,亦傾向以移項法來思考;(5) 解題過程之計算傾向採用逐條列出算式之方式,不習慣以較具結構化的逐次減項法解題。整體而言,試題會影響學童列式之品質,題目會影響學童之表徵類型。研究結果顯示,年級與數學能力皆為影響代數思考能力之變項。
對未來研究所提出之建議為:(1) 擴大測驗內容取樣;(2) 進行代數思考能力之質性研究;(3) 將研究對象拓展至國中階段,以了解完整之代數思考能力發展脈絡。
The purpose of this study is to develop a test of algebraic thinking ability for grade 5-6 to understand their performance. According to the research results, the test has proper reliability and validity.
The performance of grade 5-6 in this test has revealed mediate high difficulty and high discrimination. Their performance in numerical relation facet is better than it is in numerical pattern facet, and the discrimination of numerical pattern facet is higher than the other one. The difficulty of items has made students to solve them with procedural knowledge representation at higher level. The mediated relationships of these two facets are inferred the content adequacy of both facet in this test. It matches the results of factor analysis.
Following is describing the performance in three cognitive categories. The difficulty of numerical pattern reasoning is higher than symbolic reasoning, and the discrimination of numerical pattern reasoning is also higher than the other one. The difficulty and the discrimination of numerical relation reasoning are proper. Inferred from these mediate relationships between those three cognitive categories, the constructs in this test are proper. It provides the evidence of construct validity.
Based on the research results, the following five characteristics of their procedural knowledge representations have concluded: (1) Operations is hard to be processed while they think symbolically. (2) They made multinomial with symbols in it, and did no operations. (3) They tend to operate by transposing the elements in an equation with unknown numbers. (4) They tend to solve an equation with bracket in the left side of the equal sign by transposing the elements in an equation. (5) They tend to operate equation by equation instead of by the way of subtracting elements in series structurally. In conclusion, the quality of the equations students made and their procedural knowledge representations would influence by the properties of items. The research results also appeared that what would influence the performances in this test are their grade and mathematical ability.
There are three hints for future studies: (1) expanding the content of test. (2) Studies the algebraic thinking ability qualitatively. (3) Expanding the object of study from grade 5-6 to middle school to examine the development of algebraic thinking ability thoroughly.
中文摘要………………………………………………………………………… i
英文摘要………………………………………………………………………… ii
誌謝……………………………………………………………………………… iv
目錄……………………………………………………………………………… v
表目錄…………………………………………………………………………… vi
圖目錄…………………………………………………………………………… viii
第一章 緒論…………………………………………………………………… 1
第一節 研究動機………………………………………………………… 1
第二節 研究目的………………………………………………………… 3
第三節 研究問題………………………………………………………… 4
第四節 名詞釋義………………………………………………………… 5
第二章 文獻探討……………………………………………………………… 6
第一節 代數概念與代數思考─抽象化的本質………………………… 6
第二節 小學數學課程的代數指標與分析……………………………… 13
第三節 代數思考的相關研究…………………………………………… 24
第四節 代數思考能力測驗之編製……………………………………… 30
第三章 研究方法…………………………………………………………… 41
第一節 研究對象………………………………………………………… 41
第二節 研究工具………………………………………………………… 42
第三節 資料處理………………………………………………………… 57
第四章 研究結果與討論…………………………………………………… 48
第一節 代數思考能力測驗之信效度…………………………………… 48第二節 學童於代數思考能力測驗之表現概況………………………… 56
第三節 測驗表現與各背景變項之關係………………………………… 65
第四節 研究結果的摘要………………………………………………… 83
第五章 結論與建議………………………………………………………… 88
第一節 研究結論………………………………………………………… 88第二節 研究建議………………………………………………………… 91
第三節 研究限制………………………………………………………… 91
參考文獻……………………………………………………………………… 93
附錄一 英國國家數學課程之內容標準……………………………………… 104
附錄二 九年一貫課程數學領域課程綱要,國小代數主題之能力指標…… 108
附錄三 九年一貫課程數學領域課程綱要,國小代數主題之分年細目…… 109
附錄四 代數思考能力測驗預試題本………………………………………… 110
附錄五 代數思考能力測驗正式題本………………………………………… 115
附錄六 代數思考能力測驗評分規範………………………………………… 117
一、中文部分
王佳文(1995)。國小六年級數學解未知數問題測驗之發展與學生在認知成分和錯誤組型之分析。國立臺南師範學院初等教育研究所碩士論文,未出版,臺南。
呂玉琴(1989)。在國小實施代數教學的可能性研究。台北師院學報,2,263-286。
杜佳真(1999)。數學文字題的表徵教學策略。科學教育研究與發展,15,. 59-65。
杜佳真(2004)。能力指標系統的重組及表現標準適切性評估之研究。國立臺灣師範大學教育心理與輔導研究所博士論文,未出版,臺北。
吳明隆(2003)。SPSS 統計應用學習實務-問卷分析與應用統計。臺北:知城數位科技。
邱皓政(2004)。量化研究與統計分析:SPSS中文視窗版資料分析範例解析。臺北:五南圖書股份有限公司。
南一出版事業股份有限公司(2004)。國民小學數學課本-六年級上學期。臺南市:南一出版事業股份有限公司。
洪碧霞(2004)。國小學生數學學習潛力動態評量模式的發展與應用:數學學習潛力、工作記憶、與數學表現關係之縱貫探討(2/3)。行政院國家科學委員會(報告編號:NSC 93-2521-S-024-001)
袁媛(1993)。國中一年級學生的文字符號概念與代數文字題的解題研究。國立高雄師範大學數學教育研究所碩士論文,未出版,高雄。
教育部(1993)。國民小學課程標準。臺北:教育部。
教育部(2002)。國民中小學九年一貫課程暫行綱要修訂版─數學學習領域。臺北市:教育部。
教育部(2004)。國民中小學九年一貫課程綱要─數學學習領域。臺北市:教育部。
張麗麗(2003)。作業取樣對數學實作評量分數類推之影響。教育研究資訊,11(6),65-100。
廖學專(2002)。初探國中生等號概念之心像。國立臺灣師範大學數學系在職進修碩士論文,未出版,臺北。

廖瓊菁(1997)。國小六年級代數教學之研究。屏東師範學院國民教育研究所碩士論文,未出版,屏東。
蔣治邦(1994)。由表徵的觀點探討新教材數與計算活動的設計。 國民小學數學科新課程概說(低年級)(60-76)。 台北縣:台灣省國民學校教師研習會。
劉秋木(民78)。數學解題行為評量表編製報告。七十七年度國科會專題研究報告。
翰林出版事業股份有限公司(2004a)。國民小學數學課本-五年級上學期。臺南市:翰林出版事業股份有限公司。
翰林出版事業股份有限公司(2004b)。國民小學數學課本-六年級上學期。臺南市:翰林出版事業股份有限公司。
戴文賓 (1998)。國一學生由算術領域轉入代數領域呈現的學習現象與特徵。彰化師範大學科學教育研究所碩士論文,未出版,彰化。
戴政吉、侯美玲、詹勳國(2002):算術到代數的數學學習研究。國教天地,150,8-15。
謝豐瑞(2001)。數學課程發展的延續與改革─九年一貫代數能力指標之編排想法。載於歐用生、莊梅枝(主編),九年一貫課程學習領域研討會論文集,邁向課程新紀元(七),臺北。
蘇春萍(2006)。具體-表徵-抽象教學對不同工作記憶能力的數學學習困難學生學習未知數計算之研究。國立臺南大學特殊教育學系碩士論文,未出版,臺南。

二、西文部份
Bastable, V., & Schifter, D. (1998). Classroom stories: examples of elementary students engaged in early algebra. In J. Kaput (Ed.), Employing children’s natural powers to build algebraic reasoning in the content of elementary mathematics, Unpublished manuscript, National Center for Research in Mathematical Sciences Education.
Blanton, M., & Kaput, J. (2002). Design principals for tasks that support algebraic reasoning in elementary classrooms. In A. Cockburn & E. Nardi (Eds.), Proceedings of the Twenty-sixth International Conference for the Psychology of Mathematics Education, (Vol. 2, pp. 105-112), Norwich, England.
Booth, L. R. (1984). Algebra: Children’s strategies and errors. Windsor, UK: NFER-Nelson.
Booth, L. R. (1988). Children''s difficulties in beginning algebra. In A.F. Coxford (Ed.), NCTM 1988 yearbook:The ideas of Algebra K-12(pp. 20-33). Reston, VA: NCTM.
Carpenter, T. P., & Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades (Res. Rep. 00-2). Madison, WI: National Center for Improving Student Learning and Achievement in Mathematics and Science.
Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23, 2-33.
Collis, F. K. (1975). The Development of Formal Reasoning. Report of a Social Science Research Council sponsored Project carried out at University of Nottingham, NSW, Australia: University of Newcastle.
Confrey, J. (1995). A theory of intellectual development: Part II. For the Learning of Mathematics, 15(1), 38-48.
Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26, 66-86.

Elliott, P. C. (Ed.) (1996). Communication in mathematics, K-12 and beyond. Reston, VA: National Council of Teachers of Mathematics.
Filloy, E., y Rojano, T., (1984). From an arithmetical to an algebraic thought (a clinical study with 12-13 year olds). North American Chapter of the International Group for the Psychology of Mathematics Education. Madison, Wisconsin.
Herbert, K., & Brown, R. (1997). Patterns as tools for algebraic reasoning. Teaching Children Mathematics, 3 (6), 340-344.
Herscovics, N., & Linchevski, L.(1994). A cognitive gap between arithmetic and algebra. Educational studies in Mathematics, 27(1), 59-78.
Kaput, J. (1985). Representation and problem solving : Methodological issues related to modeling. In E. A. Silver (Ed), Teaching and learning mathematical problem solving:Multiple research perspectives (pp. 381-398), Hillsdale, NJ: Lawrence Erlbaum Associates.
Kaput, J. (1992). Technology and mathematics education. In D. Grouws (Ed.), Handbook on research in mathematics teaching and learning (pp. 515–556). New York: Macmillan.
Kaput, J. (1994). Democratizing access to calculus: New routes to old roots. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 77–156). Hillsdale, NJ: Erlbaum.
Kaput, J.(1999). Teaching and learning a new algebra. In E. Fennema, & T. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133-155). Mahwah, NJ: Erlbaum.
Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12, 317-326.
Kieran, C. (1985). Use of substitution procedure in learning algebraic equation solving. In S. K. Damarin, & M. Shelton (Eds.), Proceedings of Seventh Annual Meeting of PME-NA(pp.145-152 ). Columbus, OH: Ohio State University.

Kieran, C. (1988). Two different approaches among algebra learners. In A.F. Coxford (Ed.), NCTM 1988 yearbook:The ideas of Algebra K-12(pp. 91-96). Reston, VA: NCTM.
Kieran, C. (1989). The early learning of algebra: A structural perspective. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 33-56). Reston, VA: National Council of Teachers of Mathematics.
Kriegler, S. ( n. d.). Just what is algebraic thinking? Retrieved from http://www.math.ucla.edu/~kriegler/pub/algebrat.html
Kutz, R. (1991). Teaching elementary mathematics: an active approach. Boston: Allyn and Bacon.
Linchevski, L. & Herscovics, N.(1994). Cognitive obstacles in pre- algebra. In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of the 18th conference of the International Group for the Psychology of Mathematics Education (vol.3, pp.176-183). Lisabon, Portugal: Program Committee.
Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: W. H. Freeman.
Melillo, J. A. (1999). A analysis of Students’ transition from arithmetic to algebraic thinking. Unpublished doctoral dissertation, Kent State University, Kent.
National Center on Education and the Economy. (1997). Performance standards. Washington, D. C.:New Standards.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Polya, G. (1945).How to solve it. Princeton, New Jersey: Princeton University Press.
Schoenfeld(1985). Mathematical problem solving. Retrieved from
http://image.cse.nsysu.edu.tw/research/Math
Sfard, A.(1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
Sfard, A.(1995). The development of algebra: Confronting historical and psychological perspectives. Journal of Mathematical Behavior, 14, 15-39.
Skemp, R. (1987). The psychology of learning mathematics. Hillsdale: Erlbaum.
Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In von Glasersfeld, E. (ed.), Radical constructivism in mathematics education (pp. 177-194). Netherlands: Kluwer Academic Publishing.
Usiskin, Z.(1988). Conceptions of school algebra and uses of variables. In A.F. Coxford (Ed.), NCTM 1988 yearbook:The ideas of Algebra K-12(pp. 8-19). Reston, VA: NCTM.
Van de Walle, J. A. (1998). Elementary and middle school mathematics: Teaching developmentally (3rd ed.). New York: Longman Erickson, T., 1989. Get It Together: Math Problems for Groups. Lawrence Hall of Science, Berkeley, CA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王俊雄、董時叡、陳姿伶(2003),<臺灣農業推廣人力資源評估之研究:1954至2000年>,《中華農學會報》,第4卷第2期,頁103-119。
2. 李金龍(2005a),<三位一體:為台灣農業尋找活水源頭>,《農訓雜誌》,第22卷第4期,頁14-17。
3. 李金龍(2003a),<入會後我國農產貿易政策>,《貿易雜誌》,第123期,頁23-29。
4. 李金龍(2003b),<加入WTO農業整體情況與展望>,《農政與農情》,第128期,頁6-8。
5. 李啟誠(2000),<國立大學推動教師教育訓練需求分析>,《正修學報》,第13期,頁225-240。
6. 吳榮杰、周百隆(2000),<農會信用部組織與管理之探討>,《農業金融論叢》,第43期,頁1-42。
7. 邱曉嘉(2002),<加入WTO對我國農業的影響-以台南縣、高雄縣及屏東縣為例>,《國家政策論壇》,第2卷,第1期,頁116-125。
8. 陳金貴(1999),<人力資源發展的新趨勢-公務人員職能的提昇>,《公務人員月刊》,第40期,頁7-8。
9. 陳金貴(1995),<人力資源管理應用在公共部門的探討(上)>,《人事月刊》,第21卷,第3期,頁33-37。
10. 陳清男(2002),<現階段農會轉型因應之道>,《農訓雜誌》,第19卷第7期,頁34-35。
11. 黃富順(1998),<學習社會與人力資源發展>,《成人教育》,第44期,頁8-16。
12. 楊明憲(2005),<創造組織存在的價值-農會永續>,《農訓雜誌》,第22卷第4期,頁P23-27。
13. 廖坤榮(2002),<政府與農會組織-治理典範的挑戰>,《空大行政學報》,第12期,頁71-112。
14. 顏建賢(2002),<台灣農會的定位與組織再造策略>,《農訓雜誌》,第19卷第10期,頁37-40。
15. 張麗麗(2003)。作業取樣對數學實作評量分數類推之影響。教育研究資訊,11(6),65-100。