一、中文部分
王佳文(1995)。國小六年級數學解未知數問題測驗之發展與學生在認知成分和錯誤組型之分析。國立臺南師範學院初等教育研究所碩士論文,未出版,臺南。呂玉琴(1989)。在國小實施代數教學的可能性研究。台北師院學報,2,263-286。
杜佳真(1999)。數學文字題的表徵教學策略。科學教育研究與發展,15,. 59-65。
杜佳真(2004)。能力指標系統的重組及表現標準適切性評估之研究。國立臺灣師範大學教育心理與輔導研究所博士論文,未出版,臺北。吳明隆(2003)。SPSS 統計應用學習實務-問卷分析與應用統計。臺北:知城數位科技。
邱皓政(2004)。量化研究與統計分析:SPSS中文視窗版資料分析範例解析。臺北:五南圖書股份有限公司。
南一出版事業股份有限公司(2004)。國民小學數學課本-六年級上學期。臺南市:南一出版事業股份有限公司。
洪碧霞(2004)。國小學生數學學習潛力動態評量模式的發展與應用:數學學習潛力、工作記憶、與數學表現關係之縱貫探討(2/3)。行政院國家科學委員會(報告編號:NSC 93-2521-S-024-001)
袁媛(1993)。國中一年級學生的文字符號概念與代數文字題的解題研究。國立高雄師範大學數學教育研究所碩士論文,未出版,高雄。教育部(1993)。國民小學課程標準。臺北:教育部。
教育部(2002)。國民中小學九年一貫課程暫行綱要修訂版─數學學習領域。臺北市:教育部。
教育部(2004)。國民中小學九年一貫課程綱要─數學學習領域。臺北市:教育部。
張麗麗(2003)。作業取樣對數學實作評量分數類推之影響。教育研究資訊,11(6),65-100。廖學專(2002)。初探國中生等號概念之心像。國立臺灣師範大學數學系在職進修碩士論文,未出版,臺北。廖瓊菁(1997)。國小六年級代數教學之研究。屏東師範學院國民教育研究所碩士論文,未出版,屏東。蔣治邦(1994)。由表徵的觀點探討新教材數與計算活動的設計。 國民小學數學科新課程概說(低年級)(60-76)。 台北縣:台灣省國民學校教師研習會。
劉秋木(民78)。數學解題行為評量表編製報告。七十七年度國科會專題研究報告。
翰林出版事業股份有限公司(2004a)。國民小學數學課本-五年級上學期。臺南市:翰林出版事業股份有限公司。
翰林出版事業股份有限公司(2004b)。國民小學數學課本-六年級上學期。臺南市:翰林出版事業股份有限公司。
戴文賓 (1998)。國一學生由算術領域轉入代數領域呈現的學習現象與特徵。彰化師範大學科學教育研究所碩士論文,未出版,彰化。戴政吉、侯美玲、詹勳國(2002):算術到代數的數學學習研究。國教天地,150,8-15。謝豐瑞(2001)。數學課程發展的延續與改革─九年一貫代數能力指標之編排想法。載於歐用生、莊梅枝(主編),九年一貫課程學習領域研討會論文集,邁向課程新紀元(七),臺北。
蘇春萍(2006)。具體-表徵-抽象教學對不同工作記憶能力的數學學習困難學生學習未知數計算之研究。國立臺南大學特殊教育學系碩士論文,未出版,臺南。二、西文部份
Bastable, V., & Schifter, D. (1998). Classroom stories: examples of elementary students engaged in early algebra. In J. Kaput (Ed.), Employing children’s natural powers to build algebraic reasoning in the content of elementary mathematics, Unpublished manuscript, National Center for Research in Mathematical Sciences Education.
Blanton, M., & Kaput, J. (2002). Design principals for tasks that support algebraic reasoning in elementary classrooms. In A. Cockburn & E. Nardi (Eds.), Proceedings of the Twenty-sixth International Conference for the Psychology of Mathematics Education, (Vol. 2, pp. 105-112), Norwich, England.
Booth, L. R. (1984). Algebra: Children’s strategies and errors. Windsor, UK: NFER-Nelson.
Booth, L. R. (1988). Children''s difficulties in beginning algebra. In A.F. Coxford (Ed.), NCTM 1988 yearbook:The ideas of Algebra K-12(pp. 20-33). Reston, VA: NCTM.
Carpenter, T. P., & Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades (Res. Rep. 00-2). Madison, WI: National Center for Improving Student Learning and Achievement in Mathematics and Science.
Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23, 2-33.
Collis, F. K. (1975). The Development of Formal Reasoning. Report of a Social Science Research Council sponsored Project carried out at University of Nottingham, NSW, Australia: University of Newcastle.
Confrey, J. (1995). A theory of intellectual development: Part II. For the Learning of Mathematics, 15(1), 38-48.
Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26, 66-86.
Elliott, P. C. (Ed.) (1996). Communication in mathematics, K-12 and beyond. Reston, VA: National Council of Teachers of Mathematics.
Filloy, E., y Rojano, T., (1984). From an arithmetical to an algebraic thought (a clinical study with 12-13 year olds). North American Chapter of the International Group for the Psychology of Mathematics Education. Madison, Wisconsin.
Herbert, K., & Brown, R. (1997). Patterns as tools for algebraic reasoning. Teaching Children Mathematics, 3 (6), 340-344.
Herscovics, N., & Linchevski, L.(1994). A cognitive gap between arithmetic and algebra. Educational studies in Mathematics, 27(1), 59-78.
Kaput, J. (1985). Representation and problem solving : Methodological issues related to modeling. In E. A. Silver (Ed), Teaching and learning mathematical problem solving:Multiple research perspectives (pp. 381-398), Hillsdale, NJ: Lawrence Erlbaum Associates.
Kaput, J. (1992). Technology and mathematics education. In D. Grouws (Ed.), Handbook on research in mathematics teaching and learning (pp. 515–556). New York: Macmillan.
Kaput, J. (1994). Democratizing access to calculus: New routes to old roots. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 77–156). Hillsdale, NJ: Erlbaum.
Kaput, J.(1999). Teaching and learning a new algebra. In E. Fennema, & T. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133-155). Mahwah, NJ: Erlbaum.
Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12, 317-326.
Kieran, C. (1985). Use of substitution procedure in learning algebraic equation solving. In S. K. Damarin, & M. Shelton (Eds.), Proceedings of Seventh Annual Meeting of PME-NA(pp.145-152 ). Columbus, OH: Ohio State University.
Kieran, C. (1988). Two different approaches among algebra learners. In A.F. Coxford (Ed.), NCTM 1988 yearbook:The ideas of Algebra K-12(pp. 91-96). Reston, VA: NCTM.
Kieran, C. (1989). The early learning of algebra: A structural perspective. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 33-56). Reston, VA: National Council of Teachers of Mathematics.
Kriegler, S. ( n. d.). Just what is algebraic thinking? Retrieved from http://www.math.ucla.edu/~kriegler/pub/algebrat.html
Kutz, R. (1991). Teaching elementary mathematics: an active approach. Boston: Allyn and Bacon.
Linchevski, L. & Herscovics, N.(1994). Cognitive obstacles in pre- algebra. In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of the 18th conference of the International Group for the Psychology of Mathematics Education (vol.3, pp.176-183). Lisabon, Portugal: Program Committee.
Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: W. H. Freeman.
Melillo, J. A. (1999). A analysis of Students’ transition from arithmetic to algebraic thinking. Unpublished doctoral dissertation, Kent State University, Kent.
National Center on Education and the Economy. (1997). Performance standards. Washington, D. C.:New Standards.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Polya, G. (1945).How to solve it. Princeton, New Jersey: Princeton University Press.
Schoenfeld(1985). Mathematical problem solving. Retrieved from
http://image.cse.nsysu.edu.tw/research/Math
Sfard, A.(1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
Sfard, A.(1995). The development of algebra: Confronting historical and psychological perspectives. Journal of Mathematical Behavior, 14, 15-39.
Skemp, R. (1987). The psychology of learning mathematics. Hillsdale: Erlbaum.
Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In von Glasersfeld, E. (ed.), Radical constructivism in mathematics education (pp. 177-194). Netherlands: Kluwer Academic Publishing.
Usiskin, Z.(1988). Conceptions of school algebra and uses of variables. In A.F. Coxford (Ed.), NCTM 1988 yearbook:The ideas of Algebra K-12(pp. 8-19). Reston, VA: NCTM.
Van de Walle, J. A. (1998). Elementary and middle school mathematics: Teaching developmentally (3rd ed.). New York: Longman Erickson, T., 1989. Get It Together: Math Problems for Groups. Lawrence Hall of Science, Berkeley, CA.