(3.238.36.32) 您好!臺灣時間:2021/02/27 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林大暉
研究生(外文):Ta-Huei Lin
論文名稱:利用冷誘導及肌肉專一性系統轉殖肌酸激酶增進魚類低溫耐受度
論文名稱(外文):Transgenesis of creatine kinase using cold-inducible and muscle-specific system to develop cold tolerance in zebrafish
指導教授:吳金洌吳金洌引用關係蘇銘燦
指導教授(外文):Jen-Leih WuMing-Tsan Su
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:肌酸激酶低溫耐受度斑馬魚泳動能力
外文關鍵詞:creatine kinasecold tolerancezebrafishswimming ability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生活在熱帶及亞熱帶地區的魚類因為適應了溫暖的環境,因此在冬天時容易因為低溫而造成傷害。為了改善寒害所帶來的重大經濟損失,著手研究改善魚類對於低溫的耐受度是一個重要的課題。在本次的研究中,我們分析了鯉魚第三肌肉型肌酸激酶的生化功能,發現在低溫下,第三肌肉型肌酸激酶仍然穩定以及具有活性,因此第三肌肉型肌酸激酶可能扮演幫助鯉魚在低溫下生活時,能量代謝的一個重要的角色。因此我們分別製備了以三種不同的啟動子表現鯉魚第一型和第三肌肉型肌酸激酶的質體,並使用螢光蛋白作為篩選的標記。
藉著基因轉殖技術將鯉魚第三肌肉型肌酸激酶轉殖到實驗模式魚種(斑馬魚)中,它可以藉由表現持續且足夠強的抗寒能力,而使魚體在攝氏13℃仍能正常的泳動及生活,但是轉殖鯉魚第一肌肉型肌酸激酶並沒有改善基因轉殖斑馬魚在攝氏13℃水溫中的泳動能力。因此可知,此為面臨寒害影響的熱帶及亞熱帶魚類,欲在低溫下維持其代謝能力一個重要的指標。而斑馬魚是一個作為熱帶及亞熱帶地區魚類寒害影響改善研究的良好酵素轉殖基因平台之模式魚種。
本次研究結果顯示:在低溫下,野生型斑馬魚和基因轉殖斑馬魚的泳動能力有明顯的差異,而冷誘導啟動子和鯉魚第三肌肉型肌酸激酶啟動子更可以適時的表現鯉魚第三肌肉型肌酸激酶,增加基因轉殖斑馬魚的泳動能力。第三肌肉型肌酸激酶確實可以改善魚類對於寒冷低溫的耐受性,此外,應用於斑馬魚的成功範例可做為日後應用於國內各種易受寒害影響的經濟魚種之重要指標。
The fish that lives in the tropical or subtropical area is adapted in the temperature of the warm environment and damaged by the low temperature in the winter. In order to confront the economic loss caused by the cold stress, the improvement of the cold tolerance of fish has been studied. We analyzed the biochemical function of the M3-CK sub-isozyme from carp (Cyprinus carpio, a eurythermic fish) and found out the M3-CK was stable and active in low temperature. The M3-CK is the key enzyme of energy metabolism of carp in low temperature.
We constructed a dual functional expression vector that constitutively expressed the carp MCK and a GFP marker gene. The CMV promoter drove the GFP marker and the CMV promoter, cold-inducible promoter and carp M3-CK promoter drove the carp MCK isozymes, M1-CK and M3-CK, respectively.
By transgenesis of the key enzyme, carps M3-CK, into the model fish, zebrafish (Danio rerio), we found that the transgenic fish can express M3-CK constitutively and enhance its cold tolerance from demonstrating a substantial improvement in swimming ability in 13℃. But transgenesis of the carps M1-CK into the model fish zebrafish (Danio rerio); we found that the transgenic fish don’t improve its cold tolerance in swimming ability in 13℃.
It is a proper target to help the tropical or subtropical fish confront the cold stress by maintaining the metabolic capability in low temperature. The zebrafish is a good model system for the transgenesis of the enzyme to improve the cold tolerance of tropical and subtropical fishes.
Statistically, the results in Table 7 revealed significant differences in the swimming velocity between the wild type and the transgenic zebrafish at the lower temperature. The cold-inducible promoter and M3CK promoter can synthesis carp M3-CK that increase swimming ability of transgenic zebrafish at the right moment. The results show that it is work for the assumption that M3-CK is able to improve the target fish’s cold tolerance ability. Consequently, this application of the zebrafish is a clue for the application of economic species of fish to confront the low temperature.
Acknowledgements --------------------------------------------------------------------- i
Contents --------------------------------------------------------------------------------- ii
Figure Content --------------------------------------------------------------------------- iv
Table Content --------------------------------------------------------------------------- vi
Abbreviations ---------------------------------------------------------------------------vii
Chinese Abstract ---------------------------------------------------------------------------viii
English Abstract --------------------------------------------------------------------------- ix
I. Introduction ------------------------------------------------------------------ ------ 1
1. The influence of climate on aquaculture fishes ------------------------------1
2. Providing assistance in energy regulation and adaptation in low temperature by creatine kinase ------------------------------------------------3
3. The problems which transgenic technique confronting recently ------5
II. Purposes ------------------------------------------------------------------------------7
III. Materials and Methods ------------------------------------------------------------8
1. Materials ------------------------------------------------------------------------8
2. Methods ---------------------------------------------------------------------- 11
(1). Zebrafish maintenance ---------------------------------------------- 11
(2). Transgenic vectors preparation ---------------------------------------- 11
(2-1). Isolation of 5’-Flanking Region from Carp (Cyprinus carpio) M3CK Genomic DNA ---------------------------------------- 11
(2-2). Promoter expression analysis ---------------------------------- 13
(2-3). Plasmid construction ---------------------------------------- 13
(3). Generation of transgenic zebrafish ---------------------------------- 14
(3-1). Microinjection ---------------------------------------------------- 14
(3-2). Green fluorescence protein (GFP) expression analysis ---- 15
(3-3). mRNA expression analysis ---------------------------------- 15
(3-4). Immunoblot analysis ---------------------------------------- 15
(3-5). Determination of swimming speeds ---------------------- 16
(4). Statistical analysis ---------------------------------------------------- 16
IV. Results ---------------------------------------------------------------------------- 17
1. Construction of plasmid ---------------------------------------------------- 17
(1). Isolation of 5’-Flanking Region from
Carp (Cyprinus carpio) M3CK Genomic DNA ---------------------- 17
(2). Promoter expression analysis ---------------------------------------- 17
(3). Plasmid construction ---------------------------------------------------- 18
2. Generation of transgenic zebrafish ---------------------------------------- 19
(1). Microinjection ---------------------------------------------------------- 19
(2). Green fluorescence protein (GFP) expression analysis and
statistical analysis ---------------------------------------------------- 19
(3). mRNA expression analysis ---------------------------------------------- 20
(4). Immunoblot analysis ---------------------------------------------------- 20
(5). Determination of swimming speeds ---------------------------------- 21
3. Conclusions ---------------------------------------------------------------------- 23
V. Discussions ---------------------------------------------------------------------- 24
VI. Conclusions and Future work ---------------------------------------------- 27
VII. References ---------------------------------------------------------------------- 28
VIII. Figures and Tables ---------------------------------------------------------------- 37
1. Figure ---------------------------------------------------------------------------- 34
2. Table ---------------------------------------------------------------------------- 58
Ambrosino C, Iwata T, Scafoglio C, Mallardo M, Klein R, Nebreda AR (2006) TEF-1 and C/EBPbeta are major p38alpha MAPK-regulated transcription factors in proliferating cardiomyocytes. Biochem J. May 15; 396 (1):163-72
Amsterdam A, Lin S, Hopkins N (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev. Biol., 171:123–129
Baron U, Bujard H (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: Principles and advances. Method Enzymol., 327: 401–421
Bayer TA, Campos-Ortega JA (1992) A transgene containing lacZ is expressed in primary sensory neurons in zebrafish. Development, 115:421–426
Bessman SP, Geiger PJ (1981) Transport of energy in muscle: the phosphorylcreatine shuttle. Science, 211:448-452
Boutilier RG, Donohoe PH, Tattersall GJ, West TG (1997) Hypometabolic homeostasis in overwintering aquatic amphibians. J. Exp. Biol., 200:387-400
Chang TL (2006) Regulation of Zebrafish HSC70 promoter is a novel cold-inducible promoter from vertebrate organism. National Taiwan University, Taipei, Taiwan, Masteral Thesis. 45 pp.

Culp P, Nusslein-Volhard C, Hopkins N (1991) High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc. Natl. Acad. Sci. USA 88, 7953–7957
de La Serna IL, Ohkawa Y, Berkes CA, Bergstrom DA, Dacwar CS, Tapscott SJ, Imbalzano AN (2005) MyoD targets chromatin complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 25: 3997–4009
Delort JP, Capecchi MR (1996) TAXI/UAS: A molecular switch to control expression of genes in vivo. Hum. Gene. Ther., 7: 809–820
F.A.O. The State of the World Fisheries and Aquaculture 2002. (2002) UN FAO, Rome, Italy
Gao D, Li Z, Murphy T, Sauerbier W (1997) Structure and transcription of the gene for translation elongation factor 1 subunit alpha of zebrafish (Danio rerio). Biochim. Biophys. Acta., 1350:1–5
Ghosh AK (2002) Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp. Biol. Med. 227, 301–314
Gibbs PD, Gray A, Thorgaard G (1994) Inheritance of P element and reporter gene sequences in zebrafish. Mol. Marine Biol. Biotechnol., 3:317–326
Goldberg H, Helaakoski T, Garrett LA, Karsenty G, Pellegrino A, Lozano G, Maity S, de Crombrugghe B (1992) Tissue-specific expression of the mouse a 2(I) collagen promoter. Studies in transgenic mice and in tissue culture cells. J. Biol. Chem. 267, 19622–19630
Gorselink M, Drost MR, Coumans WA, van Kranenburg GP, Hesselink R P, Vusse GJ (2001) Impaired muscular contractile performance and adenine nucleotide handling in creatine kinase-deficient mice. Am J. Physiol. Endocrinol. Metab., 281:E619-625
Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA., 89:5547–5551
Grill MA, Bales MA, Fought AN, Rosburg KC, Munger SJ, Antin PB (2003) Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice. Transgenic research, 12:33-43
Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin Dev. Biol., 192:289–299
Hwang GL, Azizur RM, Abdul RS, Sohm F, Farahmand H, Smith A, Brooks C, Maclean N (2003) Isolation and characterization of tilapia beta-actin promoter and comparison of its activity with carp beta-actin promoter. Biochim. Biophys. Acta., 1625:11–18
Johnston IA, Temple GK (2002) Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J. Exp. Biol., 205:2305-2322

Kinoshita M, Kani S, Ozato K, Wakamatsu Y (2000) Activity of the medaka translation elongation factor 1alpha-A promoter examined using the GFP gene as a reporter. Dev. Growth Differ. 42:469–478
Koretsky AP (1995) Insight into cellular energy metabolism from transgenic mice. Physiological reviews 75
Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet., 2:743-55
Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science, 265:666–669
Lin S, Yang S, Hopkins N (1994) lacZ expression in germline transgenic zebrafish can be detected in living embryos. Dev. Biol., 161:77–83
Liu ZJ, Moav B, Faras AJ, Guise KS, Kapuscinski AR, Hackett PB (1990) Functional analysis of elements affecting expression of the beta-actin gene of carp. Mol. Cell. Biol., 10:3432–3440
Long Q, Meng A, Wang H, Jessen JR, Farrell M J, Lin S (1997) GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development, 124:4105–4111
McGee SL, Sparling D, Olson AL, Hargreaves M. (2005) Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J. Feb; 20 (2):348-9. Epub 2005 Dec 20

Muller F, Lele Z, Varadi L, Menczel L, Orban L (1993) Efficient transient expression system based on square pulse electroporation and in vivo luciferase assay of fertilized fish eggs. FEBS Lett., 324:27–32
No D, Yao TP, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA, 93:3346–3351
Noh JK, Cho KN, Han EH, Kim A, Lee JS, Kim DS, Kim CG (2003) Genomic cloning of mud loach Misgurnus mizolepis (Cypriniformes, Cobitidae) beta-actin gene and usefulness of its promoter region for fish transgenesis. Biotechnol. 5:244–252
Powers DA, Hereford L, Cole T, Chen TT, Lin CM, Kight K, Creech K, Dunham R (1992) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio) Mol. Marine Biol. Biotechnol., 1:301–308
Roman BB, Meyer RA, Wiseman RW (2002) Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice. Am. J. Physiol. Cell Physiol., 283:C1776-1783
Rome LC, Loughna PT, Goldspink G (1985) Temperature acclimation: improved sustained swimming performance in carp at low temperature. Science, 228:194-196

Roussel D, Rouanet JL, Duchamp C, Barre H (1998) Effects of cold acclimation and palmitate on energy coupling in duckling skeletal muscle mitochondria. FEBS Lett., 439:258-262
Sawicki JA, Monks B, Morris RJ (1998) Cell-specific ecdysoneinducible expression of FLP recombinase in mammalian cells. Bio. Techniques, 25:868–875
Shanti K, Kanungo MS (2004) Expression of muscle creatine kinase gene of mice and interaction of nuclear proteins with MEF-2, E boxes and A/T-rich elements during aging. Mol. Biol. Reports, 31:43–50
Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular response to drought and cold stress. Curr. Opin. Biotechnol., 7:161-167
Snodgrass JW (1991) Winter kills of Tilapia melanotheron in coastal Southeast Florida, 1989. Florida Science, 54:85-86
Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development, 103:403–12
Stuart GW, Vielkind JR, McMurray JV, Westerfield M (1990) Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development, 109:577–584


Sun HW, Hui CF, Wu JL (1998) Cloning, characterization, and expression in Escherichia coli of three creatine kinase muscle isoenzyme cDNAs from carp (Cyprinus carpio) striated muscle. J. Biol. Chem., 273:33774-33780
Sun HW, Liu CW, Hui CF, Wu JL (2002) The carp muscle-specific sub-isoenzymes of creatine kinase form distinct dimers at different temperatures. Biochem. J., 368:799-808
Swank DM, Rome LC (2001) The influence of thermal acclimation on power production during swimming. II. Mechanics of scup red muscle under in vivo conditions. J. Exp. Biol., 204:419-30
Tang H, Veldman MB, Goldman D (2006) Characterization of a muscle-specific enhancer in human MuSK promoter reveals the essential role of myogenin in controlling activity-dependent gene regulation. J Biol Chem. Feb 17; 281 (7): 3943-53. Epub 2005 Dec 18.
Tidwell JH, Allan GL (2001) Fish as food: aquaculture's contribution. Ecological and economic impacts and contributions of fish farming and capture fisheries. EMBO Rep., 2:958-63
Udvadia AJ, Linney E (2003) Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev. Biol., 256:1–17

Valadao AF, Fantappie MR, LoVerde PT, Pena SDJ, Rumjanek FD, Franco GR (2002) Y-box binding protein from Schistosoma mansoni: interaction with DNA and RNA. Molecular & Biochemical Parasitology 125: 47-57
Walter G, Barton ER, Sweeney HL (2000) Noninvasive measurement of gene expression in skeletal muscle. Proc. Natl. Acad. Sci. U S A , 97:5151-5155
Wallimann T (1994) Bioenergetics. Dissecting the role of creatine kinase. Curr. Biol., 4:42-46
Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J., 281:21-40
Wang YX, Qian LX, Yu Z, Jiang Q, Dong YX, Liu XF, Yang XY, Zhong TP, Song HY. (2005) Requirements of myocyte-specific enhancer factor 2A in zebrafish cardiac contractility. FEBS Lett. Aug 29; 579 (21):4843-50.
Watabe S (2002) Temperature plasticity of contractile proteins in fish muscle. J. Exp. Biol., 205:2231-2236


Westerfield M (1994) The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish, Brachydanio rerio (Univ. of Oregon Press, Eugene.)
Wise JP Sr., Winn RN, Renfro JL (2002) Generating new marine cell lines and transgenic species--conference summary. J. Exp. Zool., 292:217-220
Yamamoto ARH, Dauer WT (2001) The ons and offs of inducible transgenic technology: A review. Neurobiol. Dis., 8:923–932
Zelenin AV, Alimov AA, Barmintzev VA, Beniumov AO, Zelenina IA, Krasnov AM, Kolesnikov VA (1991) The delivery of foreign genes into fertilized fish eggs using high-velocity microprojectiles. FEBS Lett., 287:118–120
Zhu JK (2001) Plant salt tolerance. Trends Plant Sci., 6:66-71
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔