|
[1] H. Heilbronn, On the average length of a class of finite continued fractions, {\it Abhandlungen aus Zahlentheorie und Analysis,} VEB Deutsher Verlag, Berlin 1968. [2] R. Lidl and H. Niederreiter, {\it Finite Fields}, Cambridge University Press (1997). [3] M. Rosen, {\it Number Theory in Function Fields}, Springer-Verlag, GTM 210 (2002). [4] Chih-Nung, Hsu, A Polynomial Additive Divisor Problem. [5] J. D. Dixon, The number of steps in the Euclidean algorithm, {\it J. Number Theory} 2 (1970), 414--422. [6] T. Tonkov, On the average length of a class of finite continued fractions, {\it Acta Arith.} 26 (1974), 47--57. [7] J. W. Porter, On a theorem of Heilbronn, {\it Mathematika.} 22 (1975), 20--28. [8] H. Davenport, {\it Multiplicative Number Theory}, Springer-Verlag, GTM 74 (1980). [9] G. H. Norton, On the asymptotic analysis of the Euclidean algorithm, {\it J. Symbolic Computation} 10 (1990) 53--58. [10] G. W. Effinger and D. R. Hayes, {\it Additive Number Theory of Polynomials Over a Finite Field}, Clarendon Press Oxford (1991).
|