|
[1] P. Y. chien, “Time-division multiplexing, pseudo-PM optical communicationsystem base on triangular waveform modulated laser diode,” J. Opt. Commun., vol. 13, pp. 23-25, 1992. [2] A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies,and D. M. Spirit, “Ultra-high speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol., vol. 13, pp. 761–770, 1995. [3] V. W. S. Chan, K. L. Hall, E. Modiano, and K. A. Rauschenbach, “Architectures and Technologies for High-Speed Optical Data Networks,” J. Lightwave Technol., vol. 16, pp. 2146-2168, 1998. [4] S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron., vol. 34, pp. 2064-2079, 1998. [5] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long distance TDM and WDM soliton transmission. technologies,” IEEE J. Sel. Topics Quantum Electron., vol. 6, pp. 363–396, 2000. [6] I. N. Duling III, “Subpicosecond all-fiber erbium laser,” Electron. Lett., vol. 27, pp. 544-545, 1991. [7] M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fiber ring laser,” Electron. Lett., vol. 30, pp. 1603–1605, 1994. [8] M. Nakazawa, K. Kimura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fiber laser by selfphase modulation and spectral filtering,” Electron. Lett., vol. 32, pp. 461–463, 1996. [9] D. Jones, H. Haus, and E. Ippen, “Subpicosecond solitons in an activelymode-locked fiber laser,” Opt. Lett., vol. 21, pp. 1818–1820, 1996. [10] E. Yoshida, Y. Kimura, and M. Nakazawa, “20 Ghz, 1.8 ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression,” Electron. Lett., vol. 31, pp. 377–378, 1995. [11] M. Nakazawa, E. Yoshida, and K. Kimura, “Ideal phase-locked-loop operation of a 10 Ghz erbium-doped fiber laser using regenerative modeloking as an optical voltage controlled oscillator,” Electron. Lett., vol. 33, pp. 1318–1320, 1997. [12] K. Kimura and M. Nakazawa, “Dispersion-tuned harmonically modelocked fiber ring laser for self-synchronization to an external clock,” Opt. Lett., vol. 21, pp. 1984–1986, 1996. [13] F. K. Artner, D. Kopf, and U. Keller, “Solitary-pulse stabilization and shortening in actively mode-loked lasers,” J. Opt. Soc. Amer. B, vol. 12, pp. 486–496, 1995. [14] K. Gurs and R. Murller, "Beats and modulation in optical ruby lasers," Quantum Electronics, pp. 1113–1119, 1964. [15] H. A. Haus, "Mode-locking of lasers," IEEE J. Quantum Electron., vol. 6, pp. 1173-1185, 2000. [16] I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900 - 0.945 and 1.070 - 1.135 Mum,” Opt. Lett, vol. 11, pp. 709, 1986. [17] I. N. Duling, L. Goldberg, and J. F. Weller, “High-power, mode-locked Nd:fibre laser pumped by aninjection-locked diode array,” Electron. Lett., vol. 24, pp. 1333, 1988. [18] D. C. Hanna, A. Kazer,M.W. Phillips, D. P. Shepherd, and P. I. Suni, “Active mode-locking of an Yb:Er fibre laser,” Electron. Lett., vol. 25, pp. 95, 1989. [19] M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B, vol. 65, pp. 259, 1997. [20] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and I. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B, vol. 65, pp. 277, 1997. [21] J. Wilson, and Hawks, “Lasers: principles and applications,” Prentice Hall, 2nd Edn., Chap. 3, 1987. [22] K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol., vol. 16, pp. 615, 1998. [23] D. Kuizenga, and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part I: Theory,” IEEE J. Quantum Electron., vol. 6, pp.694-708, 1970. [24] B. Bakhshi, and P. Andrekson, “40GHz actively modelocked polarisation maintaining erbium fibre laser,” Electron Lett., vol. 5, pp. 411-412, 2000. [25] Z. Ahmed, and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fibre ring lasers,” Electron. Lett., vol. 5, pp. 55-57, 1996. [26] M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelockedpolarisation-maintaining erbium fibre ring laser,” Electron. Lett., vol. 30, pp. 1603-1605, 1994. [27] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim E. H. Lee, “External fibre laser based pulse amplitude equalisation scheme forrational harmonic modelocking in a ring-type fibre laser,” Electron. Lett., vol. 34, pp. 182-184, 1998. [28] E. Yoshida, and M. Nakazawa, “80~200 GHz erbium doped fibre laser using a rational harmonicmode-locking technique,” Electron. Lett., vol. 32, pp. 1370-1372, 1996. [29] D. L. A. Seixas, and M. C. R. Carvalho, “50 GHz fiber ring laser using rational harmonic mode-locking,” IEEE MTT-S IMOC., vol. 1, pp. 351–353, 1987. [30] D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser--Part I: Theory,” IEEE J. Quantum Electron., vol. 6, pp. 694-708, 1970. [31] D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser--Part II: Experimental results in a Nd:YAG laser with internal FM modulation,” Quantum Electronics, IEEE Journal of., vol. 6, pp. 709-715, 1970. [32] M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, S. H. Yun, B. Y. Kim, and Y. W. Koh, “An electronically wavelength-tunable mode-locked fiber laser using an all-fiber acoustooptic tunable filter,” Photonics Tech. Lett., vol. 8, pp. 1618-1620, 1996. [33] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fibre laser based pulse amplitude equalisation scheme forrational harmonic modelocking in a ring-type fibre laser,” Electron. & Telecommun. Res. Inst, vol. 34, pp. 182-184, 1998. [34] H. J. Lee, K. Kim, and H. G. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun., vol. 160, pp. 51–56, 1999. [35] Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, “Theoretical and experimental study of pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser,” IEEE J. Quantum Electron., vol. 37, pp. 33–37, Jan. 2001. [36] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic modelocking in a ring-type fiber laser,” Electron. Lett., vol. 34, no. 2, pp. 182–184, 1998. [37] Y. Shiquan, L. Zhaohui, Z. Chunliu, D. Xiaoyi, Y. N. Shuzhong, K. Guiyun, and Z. Qida, “Pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both modelocker and equalizer,” IEEE Photon. Tech. Lett., vol. 15, pp. 389–391, 2003. [38] X. Feng, Y. Liu, S. Yuan, G. Kai,W. Zhang, and X. Dong, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber laser using nonlinear modulation,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1813–1815, 2004. [39] G. Zhu, H. Chen, and N. Dutta, “Time domain analysis of a rational harmonic mode locked ring fiber laser,” Appl. Phys. Journal., vol. 90, pp. 2143-2147, 2001. [40] F. E. Wickens, U. M. Spirit , and L. C. Blank, , “20Gbit/s, 205km optical time division multiplexed transmission system,” Electron. Lett., vol. 27, pp. 973-974, 1991. [41] J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim., “The Theory and Design of Chirp Radars,” Bell Syst. Tech.J., vol. 39, pp.745-820, 1960. [42] C. V. Shank, R. Yen, and R. L. Fork, “Picosecond Dynamics of Photoexcited Gap States in Polyacetylene,” Phys. Rev. Lett., vol. 49, pp. 1660-1663, 1982. [43] S. L. Palfrey and D. R. Grischkowsky, “Generation of 16-fsec frequency-tunable pulses by optical pulse compression,” Opt. Lett., vol. 10, pp. 562, 1985. [44] W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, and C. V. Shank, “Femtosecond Dynamics of Resonantly Excited Excitons in Room-Temperature GaAs Quantum Wells,” Phys. Rev. Lett., vol. 46, pp. 1120, 1985. [45] R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett., vol. 12, pp. 483, 1987. [46] D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science, vol. 301, pp. 1702–1704, 2003. [47] F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express., vol. 12, pp. 835-840, 2004. [48] D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, K. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Lett., vol. 13, pp. 6153-6159, 2005. [49] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt Lett. , vol. 8, pp. 289, 1983. [50] E. M. Dianov, A. Ya. Karasik, and P. V. Mamyshev, “100-Fold compression of picosecond pulses from a parametric light source in single-mode optical fibers at wavelengths 1.5–1.65 μm,” JETP. . Lett., vol. 40, pp. 903, 1984. [51] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimentalobservation of picosecond pulse narrowing andsolitons in optical fibers,” Phys. Rev. Lett. , vol. 45, pp. 1095, 1980. [52] Govind P. Agrawal, “Nonlinear fiber optics”, third edition, 2001. [53] C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett., vol. 40, pp. 761, 1982. [54] B. Nikolaus and D. Grischkowsky, “12X pulse compression using optical fibers,” Appl. Phys. Lett.,vol. 42, vol. 1, 1983. [55] E. M. Dianov, A. Ya, Karasik, P. V. Mamyshev, G. I. Onishukov, A. M. Prokhorov, M. F. Stelmakh. and A. A. Fomichev, “Picosecond structure of the pump pulse in stimulated Raman scattering in a single-mode fiber,” JETP Lett., vol. 39, pp. 691-695, 1984. [56] Govind P. Agrawal, “Applications of Nonlinear fiber optics”, 2001. [57] P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett., vol. 12, pp. 628, 1987. [58] M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett., vol.26, pp. 2038-2040, 1990. [59] L. Chusseau and E. Delevaque, “250-fs optical pulse generation by simultaneous soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation,” Opt. Lett., vol. 19, pp. 734-736, 1994. [60] R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett., vol. 7, pp. 512-514, 1982. [61] H. Kobrinski, R. M. Bulky, M. S. Goodman, M. P. Vecchi, C. A. Brackett, L. Curtis, and J. L. Gimlet, “Demonstration of high capacity in the LAMBDANET architecture: A multiwavelength optical network,” Electron. Lett., vol. 23, pp. 824-826, 1987. [62] O. E. De Lange, “Wide-band optical communications systems: Part II-Frequency division multiplexing,” Proc. IEEE., vol. 58, pp. 1683-1690, 1970. [63] T. S. Kinsel, and R. T. Denton, “Terminals for a high-speed optical pulse code modulation communication system: II. Optical multiplexing and demultiplexing,” Proc. IEEE., vol. 56, pp. 146-154, 1968. [64] F. S. Chen, “Demultiplexers for high-speed optical PCM,” Quantum Electron., vol. QE-7, pp. 24-29, 1971. [65] D. M. Spirit, and L. C. Blank, “Optical time division multiplexing for future high-capacity network applications,” BT Technol. Journ., vol. 11, pp. 35-45, 1993. [66] S. Kawanishi, “Time division multiplexed 100 GWs,” OFC., vol. 39, 1994. [67] A. D. Ellisand, and D. M. Spirit, “Unrepeatered transmission over80kmstandard fiber at 40 Gb/s,” Electron. Lett., vol. 30, pp. 72-74, 1994. [68] A. D. Ellisand, T. Widdowson, and X. Shan, “A 3 node, 40 Gb/s OTDMnetwork experiment using electro-optic switches,” Electron. Lett., vol. 30, pp. 1333-1334, 1994. [69] S . J. Buchsbaum and R. Kompfner, “Time-division multiplex opticaltransmission system,” U.S. Patent 3 506 834, 1970. [70] T. S. Kinsel and F. S. Chen, “Experimental evaluation of an optical time division demultiplexer for twenty-four channels,” Appl. Opt., vol. 11, pp. 1411-1418, 1972. [71] M. Thewalt, “Time domain multiplexing of signals on an optical fiber using mode-locked laser pulses,” IBM Tech. Disclosure Bull., vol. 24, pp. 2473-2475, 1981. [72] A. Alping, T. Andersson, R. Tell, and S . T. Eng, “20-Gbit/s optical time multiplexing with TJS GaAlAs lasers,” Elecrron. Lett., vol. 18, pp. 422-424, 1982. [73] K. Iwatsuki, K. Suzuki, S. Nishi, and M. Saruwatari, “40 Gbit/s optical soliton transmission over 65km,” Elecrron. Lett., vol. 28, pp. 1821-1822, 1992. [74] M. Artiglia, E. Ciaramella, and P. Gallina, “Demonstration of CW oliton trains at 10, 40 and 160 GHz by means of induced modulation nstability,” Opt. Lett., vol. 12 pp. 305–308, 1997. [75] M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett., vol. 36, no.24, pp. 2027–2029, 2000. [76] A. Takada, T. Sugie, and M. Saruwatari, “High-speed picosecond optical compression from gain-switched 1.3 m distributed feedback (DFB) LD through highly dispersive single-mode fiber,” J. Lightwave Technol., vol. LT-5, pp. 1525–1533, 1987. [77] M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett., vol. 26, pp. 2038–2040, 1990. [78] J. T. Ong, R. Takahashi, M. Tsuchiya, S.-H. Wong, R. T. Sahara, Y. Ogawa, and T. Kamiya, “Subpicosecond soliton compression of gain switched diode laser pulses using an erbium-doped fiber amplifier,” IEEE J. Quantum Electron., vol. 29, pp. 1701–1707, 1993. [79] R. P. Davey, K. Smith, R. Wyatt, D. L. Williams, M. J. Holmes, D. M. Pataca, M. L. Rocha, and P. Gunning, “Subpicosecond pulse generation from a 1.3 μm DFB laser gain-switched at 1 GHz,” Electron. Lett., vol. 32, pp. 349–351, 1996. [80] M. Miyamoto, M. Tsuchiya, H.-F. Liu, and T. Kamiya, “Generation of ultrafast (~65 fs) pulses from 1.55 μm gain-switched distributed feedback (DFB) laser with soliton compression by dispersion arrangements,” Jpn. J. Appl. Phys., vol. 35, pp. L1330–L1332, 1996. [81] M. Suzuki, H. Tanaka, N. Edagawa, K. Utaka, and Y. Matsushima,“Transform-limited optical pulse generation up tp 20-GHz repetition rate by a sinusoidally driven InGaAsP electroabsorption modulator,” J. Lightwave Technol., vol. 11, pp. 468–473, 1993. [82] M. Suzuki, N. Edagawa, H. Taga, H. Tanaka, S. Yamamoto, and S. Akiba, “Feasibility demonstration of 20 Gbit/s single channel soliton transmission over 11500 km using alternating-amplitude solitons,” Electron. Lett., vol. 30, pp. 1083–1084, 1994. [83] M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “Generation of transform-limited optical pulses at 10 GHz using an electroabsorption modulator and a chirped fiber Bragg grating,” Electron. Lett., vol. 31, pp. 671–672, 1995. [84] D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using electroabsorption modulators,” in Tech. Dig. ECOC’97, pp. 23–26, 1997. [85] H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er3+-doped fiber lasers with an all polarizationmaintaining ring cavity,” Electron. Lett., vol. 28, pp. 2095–2096, 1992. [86] J. B. Schlager, P. D. Hale, and D. L. Franzen, “Subpicosecond pulse compression and Raman generation using a mode-locked erbium-doped fiber laser-amplifier,” IEEE Photon. Technol. Lett., vol. 2, pp. 562–564, 1990. [87] A. Takada and H. Miyazawa, “30 GHz picosecond pulse generation from actively mode-locked erbium-doped fiber laser,” Electron. Lett., vol. 26, pp. 216–217, 1990. [88] Th. Pfeiffer and G. Veith, “40 GHz pulse generation using a widely tunable all-polarization preserving erbium fiber ring laser,” Electron. Lett., vol. 29, pp. 1849–1850, 1993. [89] D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fiber laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett., vol. 33, pp. 486–488, 1997. [90] A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps pulse generation at 40 GHz in phaselocked ring laser incorporating highly nonlinear fiber for application to 160 Gbit/s OTDM networks,” Electron. Lett., vol. 35, no. 8, pp. 645–646, Apr. 1999. [91] G. Raybon et al., “Wavelength-tunable actively mode-locked monolithic laser with an integrated vertical coupler filter,” Opt. Lett., vol. 18, no. 16, pp. 1335–1337, 1993. [92] C. Wu, and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron., vol. 36, pp. 145–150, 2000. [93] G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry–Pérot stabilizer for soliton transmission,” Opt. Lett., vol. 18, no. 2, pp. 107–109, 1993. [94] G. P. Agrawal, Fiber-Optical Communication System, 3nd ed.New York: Wiley, 2002.
|