跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳黃世宏
研究生(外文):Shih-Hung Wu Huang
論文名稱:Ca2+/Calmodulin參與UV-B誘導裂片石蓴抗氧化酵素活性及基因調節
論文名稱(外文):Ca2+/Calmodulin regulate UV-B induction of antioxidant enzyme activity and gene expression in Ulva fasciata Delile (Chlorophyta, Ulvales)
指導教授:李澤民李澤民引用關係沈士新沈士新引用關係
指導教授(外文):Tse-Min LeeShyn-Shin Sheen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:45
中文關鍵詞:鈣離子紫外光裂片石蓴
外文關鍵詞:calciumultraviolet radiationUlva fasciata
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討Ca2+/Calmodulin是否參與UV-B (2.5W/m2) 逆境誘導裂片石蓴 (Ulva fasciata Delile) 抗氧化酵素活性及其基因表現。將裂片石蓴置於含Ca2+ (10 mM),ethyleneglycol-bis-(2-aminoethyl ether) N, N, N’-tetraacetic acid (EGTA,15 mM),Ca2+ + EGTA 的人工海水 (artificial seawater;ASW) 中,照射UV-B (2.5 W/m2) 4或9小時,測量 SOD (superoxide dismutase)、CAT (catalase)、APX (ascorbate peroxidase) 的生理活性。Ca2+ 會抑制 SOD 的活性,且在9小時會比4小時顯著。添加 EGTA或voltage-dependent Ca2+ 通道拮抗劑 verapamil (5 μM) 會抑制藻體對細胞外 Ca2+ 的利用效果而使 SOD 活性上升。UV-B照射與非UV-B照射下,CAT 活性上升皆會因為外加 EGTA 而上升。在不照 UV-B (2.5W/m2) 的情況下,添加 EGTA 會使 APX 活性明顯地下降。但是照射 UV-B (2.5W/m2) 之後,不管增加或減少海水中的鈣離子,對 APX 活性影響不大。另一方面,將裂片石蓴置於含 Calmodulin 抑制劑 chlorpromazine (CP,0.1-0.5 μM)、 trifluoperazine (TFP,0.5-1.0 μM) 或 N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W7,20 μM) 的人工海水中,照射 UV-B (2.5 W/m2) 9小時,會促進 SOD、APX 的活性上升,不過 CAT 活性會被抑制。W7 的類似物N-(6-aminohexyl)-1-naphthalene-sulfonamide (W5,20 μM) 則不會使APX活性上升。另外 northern blotting 的結果跟 APX、CAT 的生理活性相符。故 Ca2+/Calmodulin 的確與裂片石蓴 (Ulva fasciata Delile) 在 UV-B (2.5W/m2) 逆境下的抗氧化酵素活性及其基因表現有關。
The role of Ca2+/Calmodulin in the induction of the antioxidant enzymes activity and their gene expression in a marine macroalga Ulva fasciata Delile exposed to Ultraviolet-B(2.5W/m2)-induced oxidative stress was investigated. The activities of SOD (superoxide dismutase), CAT (catalase) and APX (ascorbate peroxidase) were assessed by exposing Ulva fasciata segments to calcium (10 mM)-containing, ethyleneglycol- bis-(2-aminoethyl ether) N, N, N’-tetraacetic acid (EGTA) (15 mM)- containing, both Ca2+and EGTA-containing artificial seawater with UV-B (2.5 W/m2) radiation for 4 or 9 h. The results show that calcium would inhibit the SOD activity, more significant for 9-h UV-B radiation. Besides, the treatment of EGTA and verapamil (5 μM), a voltage-dependent Ca2+ channel blocker, would decrease the Ca2+ availability and enhance the SOD activity. The CAT activity would increase in treatment of EGTA whether UV-B (2.5 W/m2) was radiated or not. Without UV-B (2.5W/m2) radiation, treatment of EGTA would conspicuously decrease the APX activity, however, it is worthy of notice that the APX activity is independent of the calcium concentration after the UV-B radiation. On the other hand, treatment of calmodulin inhibitors, chlorpromazine (CP,0.1-0.5 μM), trifluorperazine (TFP,0.5-1.0 μM) or N-(6-aminohexyl)-5-chloro-1- naphthalene-sulfonamide (W7,20 μM), the activities of SOD and APX would enhance and the activity of CAT would conversely decrease with UV-B radiation for nine hours. The analog of W7, N-(6-aminohexyl)-1- naphthalene-sulfonamide (W5,20 μM), has no significant effects on APX activity. Based on the data of northern blotting is in accordance with the activities of APX and CAT. Therefore, we suggested that Ca2+/Calmodulin are involved in the response of UV-B-induced stress in Ulva fasciata.
中文摘要
英文摘要
目錄
表目錄
圖目錄
第一章 前言
第二章 材料與方法
第三章 結果
第四章 討論
參考文獻
黃圓滿, 1990. 葉片老化之研究:酸性磷酸水解酵素活性之變化與鈣離子效應。國立台灣大學農藝學研究所碩士論文。台灣,中華民國。

柳嘉雄, 1999. Ca2+/Calmodulin與NaCl誘導裂片石蓴 (Ulva fasciata Delile) (Ulvales , Chlorophyta) 脯氨酸累積之關係。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。

Aguilera J., Dummermuth A., Karsten U., Schriek R., Wiencke C., 2002. Enzymatic defences against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biology 25:432–441.

Asada K., 1999. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50:601-639.

Asada K., Takahashi M., 1987. Production and scavenging of active oxygen radicals in photosynthesis. pp. 227-288. In Kyle D.J., Osmond C.B., Arntzen C.J., eds, Photoinhibition, vol. 9. Elsivier, Amsterdam Press.

Askerlund P., 1997. Calmodulin-stimulated Ca2+-ATPases in the vacuolar and plasma membranes in cauliflower. Plant Physiology 114:999-1007.

Bischof K., Hanelt D., Wiencke C., 1998. UV-radiation can affect depth-zonation of Antarctic macroalgae. Marine Biology 131:597–605.

Bischof K., Hanelt D., Wiencke C., 2000. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555–562.

Boldt R., Scandalios J.G., 1997. Influence of UV-light on the expression of the Cat2 and Cat3 catalase genes in maize. Free Rasical Biology & Medicine 23:505-514.

Brosche M., Strid A., 2003. Molecular events following perception of ultraviolet-B radiation by plants. Physiologia Plantarum 117:1-10.

Clapham D.E., 1995. Calcium signaling. Cell 80:259-268.

Geiser J.R., Vantuinen D., Brockerhoff S.E., Neff M.M., Davis T.N., 1991. Can calmodulin function without binding calcium. Cell 65:949-959.

Choo K.S., Snoeijs P., Pedersen M., 2004. Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana. Journal of Experimental Marine Biology and Ecology 298:111-123.

Halliwell B., Gutteridge J.M.C., 1989. Free Radicals in Biology and Medicine. Clarendon. Oxford University Press.

Henley W.J., Lindley S.T., Levavasseur G., Osmond C.B., and Ramus J., 1992. Photosynthetic response of Ulva rotundata to light and temperature during emersion on an intertidal sand flat. Oecologia 89:516-523.

Einav R., Breckle S., and Beer S., 1995. Ecophysiological adaptation strategies of some intertidal marine macroalgae of the Israeli Mediterranean coast. Marine Ecology Progress Series 125:219-228.

Kauss H., 1987. Some aspects of calcium-dependent regulation in plant metabolism. Annual Review of Plant Physiology 38:47-72.

Kondo N., Kawashima M., 2000. Enhancement of the tolerance to oxidative stress in cucumber (Cucumis sativus L.) seedlings by UV-B irradiation: possible involvement of phenolic compounds and antioxidative enzymes. Journal of Plant Research 113:311-317.

Kubo A., Aono M., Nakajima N., Saji H., Tanaka K., Kondo N., 1999. Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. Journal of Plant Research 112:279-290.

Lee T.M., Liu C.H., 1999a. Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. Journal of Experimental Botany 50:1855-1862.

Lee T.M., Liu C.H., 1999b. Regulation of NaCl-induced prolime accumulation by calmodulin via modification of proline dehydrgenase activity in Ulva fasciata (Chlorophyta). Australian Journal of Plant Physiology 26:595-600.

Lee R.E., 1989. Chlorophyta. pp. 224-228. In Phycology. Cambridge University Press, New York.

McKersie B.D., Leshem Y., 1994. Stress and stress coping in cultivated plants. Kluwer Academic Press, New York.

Munne´-Bosch S., Alegre L., 2002. The function of tocopherols and tocotrienols in plants. Critical Review in Plant Science 21:31–57.

Noctor G., Foyer C.H., 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49:249-279.

Reiss C., and Beale S.I., 1995. External calcium requirements for light induction of chlorophyll accumulation and its enhancement by red light and cytokinin pretreatments in excised etiolated cucumber cotyledons. Planta 196:635-641.

Roberts D.M., 1992. Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 43:375-414.

Russell J.M., Luo M.Z., Cicerone R.J., Deaver L.E., 1996. Satellite confirmation of the dominance of chloroflurocarbons in the global stratospheric chlorine budget. Nature 379:526-529.

Shiu C.T., and Lee T.M., 2005. Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. Journal of Experimental Botany 56:2851-2865.

Smirnoff N., Wheeler G.L., 2000. Ascorbic acid in plants: biosynthesis and function. Critical Reviews of Plant Science 19:267–290.

Tucker E.B., Lee M., Alli S., Sookhdeo V., Wada M., Imaizumi T., Kasahara M., Hepler P.K., 2005. UV-A induces two calcium waves in Physcomitrella patens. Plant Cell Physiology 46:1226-1236.

Van de Poll W.H., Bischof K., Buma A.G.J., Breeman A.M., 2003. Habitat related variation in UV tolerance of tropical marine red macrophytes is not temperature dependent. Physiologia Plantarum 118:74–83.

Willekens H., Chamnogopol S., Davey M., Schraudner M., Langebartels C., 1997. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. The EMBO Journal 16:4806–4816.

Yang T., and Poovaiah B.W., 2003. Calcium/calmodulin-mediated signal network in plants. Trends Plant Science 8:505-512.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top