跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾培臺
研究生(外文):Pei-Tai Tseng
論文名稱:金魚酪氨酸酶基因及啟動子之分子選殖及其對斑馬魚(Daniorerio)和金魚(Carassiusaruatus)色素生成之影響
論文名稱(外文):Molecular cloning of goldfish tyrosinase gene & promoter and the impacts of tyrosinase on the pigmentation of zebrafish(Danio rerio) and goldfish (Carassius aruatus)
指導教授:陸振岡
指導教授(外文):Jenn-Kan Lu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:酪氨酸酶色素生成金魚
外文關鍵詞:tyrosinasepigmentationgoldfish
相關次數:
  • 被引用被引用:1
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酪氨酸��(tyrosinase)在黑色素(melanin)代謝生成的過程中,是將酪氨酸(tyrosine)轉變成黑色素的重要因子。當體內酪氨酸�※穧]遭到抑制,黑色素將無法被合成,生物體會呈現白化(albino)的現象。本實驗目的為研究金魚與斑馬魚酪氨酸�※穧]之表現模式及其對魚類黑色素形成的影響。利用RT-PCR及RACE選殖出金魚酪氨酸�※穧]的全長cDNA共1921個鹼基對,可以轉譯成535個氨基酸。其中包含一個似表皮生長因子區域(EGF-like domain)和兩個銅離子結合區域(copper binding domain)。與其他脊椎動物酪氨酸�※穧]比較,如牛、狗、鵪鶉、斑馬魚、雞、人類、河鯰、小鼠、虹鱒、兔子、青鱂魚、中華鱉、黑斑蛙、豬和河豚等酪氨酸�※穧]核酸之保守性為40% ~84%,氨基酸序列相似度為39% ~88%。在親源性分析上顯示金魚的酪氨酸�※穧]與斑馬魚、河鯰、虹鱒、青鱂魚、河豚較為近似。利用PCR選殖金魚酪氨酸�※穧]體DNA,其序列上含有四個編碼子(exon)與三個插入子(intron)。利用GenomeWalker的方式選殖出部分金魚酪氨酸�※穧]的啟動子序列426個鹼基對,其中含有一個E-box(CAGCTG)的序列。利用即時定量PCR分析方法研究金魚各組織的酪氨酸�※穧]表現量,結果顯示金魚的酪氨酸�※穧]在眼、鰓、表皮、鰭、肌肉、腦、腎、肝、腸、胃、泳鰾均有表現,其中眼、表皮、腦、鰭的表現量較高。在研究不同化學物質對酪氨酸�※穧]在斑馬魚各胚胎發育時期基因表現量之影響中發現,浸泡福瑞松可以延遲斑馬魚胚胎酪氨酸�〞滌穧]表現約12小時,浸泡雙���釣�醯銨可以延遲大部分酪氨酸�〞滌穧]直表現60小時。分別將金魚胚胎浸泡福瑞松、雙���釣�醯銨與咖啡因之研究,發現福瑞松、雙���釣�醯銨皆可以抑制浸泡中的金魚胚胎酪氨酸�※穧]表現量約86小時。浸泡咖啡因後可持續促進浸泡中的金魚胚胎酪氨酸�※穧]表現量達86小時。在以福瑞松、雙���釣�醯銨以及咖啡因皮下注射的方式處理金魚試驗中,發現0.1ng/g的福瑞松、雙���釣�醯銨以及咖啡因對於金魚皮膚酪氨酸�※穧]的表現無顯著影響。而在注射1ng/g的咖啡因有較明顯促進金魚皮膚酪氨酸�※穧]的表現。注射1ng/g的雙���釣�醯銨有明顯的抑制金魚皮膚酪氨酸�※穧]的表現,但注射福瑞松並無顯著差異。在餵食金魚含有不同濃度性荷爾蒙、神經傳導刺激物飼料研究中發現多巴、正腎上腺素、甲基睪固酮、雌二醇、血清動素、福瑞松和麴酸皆會抑制金魚皮膚細胞酪氨酸�※穧]的表現。U6-anti-tyr-EGFP構築載體可以抑制斑馬魚胚胎的酪氨酸�※穧]表現及黑色素生成。
Tyrosinase is an important key enzyme in the pathway of melanin metabolism. Tyrosinase catalyzed tyrosine to melanin. The lacks of tyrosinase activity would cause albinism. To study the expression pattern of tyrisinase gene in goldfish and its impacts on the pigmentation process of fish. The tyrosinase full-length cDNA of goldfish was cloned by RT-PCR and RACE method. Analysis of nucleotide sequence revealed that tyrosinase full-length cDNA consists of 1921 bp containing an open reading frame of 1623bp, which encodes 535 amino acids. There is one epidermal growth factor (EGF) like domain and two copper binding domains in the tyrosinase gene sequence. When compared with other vertebrates such as Bos Taurus, Canis familiaris, Coturnix japonica, Denio rerio, Gallus gallus, Homo sapiens, Ictalurus punctatus, Mus musculus, Oncorhynchus mykiss, Oryzias latipes, Oryctolagus cuniculus, Pelodiscus sinensis japonicus, Rana nigromaculata, Sus scrofa and Takifugu rubripes, the identity and similarity of tyrosinase gene ranging from 41% to 84% and 40% to 88%, respectively. In phylogenetic analysis, the goldfish tyrosinase is grouped with Denio rerio, Ictalurus punctatus, Takifugu rubripes, Oncorhynchus mykiss, Takifugu rubripes. The genomic DNA structure of tyrsinase was composed of four exons and three introns. The partial tyrosinase promoter consists of 426 bp containing a E-box(CAGCTG). The higher expression level of goldfish tyrosinase gene was detected in the eye, skin, fin and muscle tissues. Delay the expression of the zebrafish and goldfish tyrosinase gene were observed in embryos when immersed in PTU and Bis solutions. Following embyos immersed in caffeine solution the tyrosinase gene expression in goldfish was increased. Goldfish tyrosinase mRNA level increased following the injection of caffeine and decreased following PTU or Bis injection. Decreasing tyrosinase gene expression was found in the goldfish fed with dopa, PTU, noradrenaline, serotonin, kojic acid, 17α-methyl-testosterone or β-estradiol. U6-anti-tyr-EGFP construct can reduce tyrosinase gene expression and pigmentation in zebrafish.
謝詞………………………………..………………………………..….. i
摘要…………………………………………..……………………..….. ii
目錄……………………………………………………..……………… vi
表目錄…………………………………………………………....…….. xi
圖目錄……………………………………………………..………….... xii
壹、前言……………………………………………………………….. 1
一、世界觀賞魚市場………………..…………………...…….. 1
二、台灣觀賞魚的發展……………...………………………… 2
三、觀賞魚市場的需求………………………………………… 4
四、魚類的色素………………………………………………… 4
五、黑色素與體色的關係……………………………………… 5
六、酪氨酸�﹛]tyrosinase)基因與黑色素(melanin)生成的
關係…………………………………………………………
7
七、酪氨酸�※穧]啟動子(tyrosinase promoter)……………… 8
八、觀賞魚顏色與外界因子的關係…………………………… 9
九、觀賞魚的人工改良技術…………………………………… 10
十、觀賞魚基因轉殖技術…….………………………………… 10
十一、RNA 干擾的應用………..…….…………………………… 12
十二、營養基因體學(Nutrigenomics)…………………………… 14
十三、實驗研究目標………………………….…………………… 16
貳、材料與方法………………………………………………………... 18
一、 金魚飼養與魚卵收集……………………………….………... 18
1-1 金魚之飼養……………………………………..…….. 18
1-2 金魚之催熟及魚卵之收集………..………………….. 18
1-3 金魚胚胎發育的觀察…………………………………. 19
二、 金魚酪胺酸�※穧]cDNA 序列選殖………………………… 19
2-1 金魚表皮組織total RNA 之抽取…………………….. 20
2-2 RNA 濃度與純度的測量……………………………… 20
2-3 RNA 凝膠電泳………………………………………… 21
vii
2-4 設計退化性PCR 引子………………………………… 21
2-5 反轉錄(RT)………………………………………… 22
2-6 聚合��鏈連鎖反應(PCR)…………………………. 22
2-7 膠體萃取(Gel extraction)………………………….. 22
2-8 定序�^體的構築與選殖………………………………. 23
2-8-1 製備勝任細胞(competent cell)……………… 23
2-8-2 接合作用(Ligation)…………………………. 24
2-8-3 轉型作用(Transformation)………………….. 24
2-8-4 篩選(Selection)……………………………… 25
2-8-5 小量質體製備(Mini-preparation)…………… 25
2-8-6 質體DNA 純度和濃度計算…………………… 25
2-8-7 質體DNA 的限制��切割及電泳分析和PCR 分
析………………………………………………...
26
2-8-8 定序(Auto-sequence)與分析……………….. 26
三、 金魚酪胺酸�※穧]全長cDNA 之選殖……………………… 27
3-1 以GeneRacerTM kit 選殖金魚酪氨酸�※穧]之cDNA
全長序列………………………………………………
27
3-1-1 去除RNA 5`端磷酸根…………………………. 27
3-1-2 純化去磷酸根之RNA………………………… 27
3-1-3 去除mRNA5’端帽子結構(5’ Cap structure)…28
3-1-4 純化去除mRNA5’端帽子結構之RNA……… 28
3-1-5 接合寡RNA 片段……………………………… 28
3-1-6 純化接合寡RNA 片段之RNA………………… 29
3-1-7 第一股cDNA 之合成(First-strand cDNA
synthesis)………………………………………
29
3-2 5’RACE(Rapid amplification of 5’cDNA ends)………29
3-2-1 5’UTR之第一次聚合酵素連鎖反應與巢氏聚合
酵素連鎖反應………………………………..
29
3-2-2 膠體萃取(Gel Extraction)…………………… 31
3-2-3 定序�^體的構築與選殖……………………….. 31
3-3 3’RACE(Rapid amplification of 3’cDNA ends)………31
3-3-1 3’UTR 之第一次聚合酵素連鎖反應與巢氏聚
合酵素連鎖反應………………………………..
31
viii
3-3-2 膠體萃取(Gel Extraction)…………………… 32
3-3-3 定序�^體的構築與選殖……………………..… 32
3-4 定序結果與分析………………………………………. 32
四、 金魚酪胺酸�※穧]體DNA(Genomic DNA)序列之選殖… 33
4-1 抽取金魚之Genomic DNA…………………………… 33
4-2 DNA 濃度與純度的測量……………………………... 33
4-3 聚合��連鎖反應(PCR)………………………………34
4-4 膠體萃取(Gel Extraction)……………………………34
4-5 定序�^體的構築與選殖………………………………. 34
4-6 定序結果與分析………………………………………. 35
五、 金魚酪胺酸�※穧]啟動子(promoter)之分子選殖…………35
5-1 抽取金魚之Genomic DNA…………………………… 35
5-2 DNA 濃度與純度的測量……………………………... 36
5-3 基因體DNA 內切限制��切割……………………….. 36
5-4 純化基因體DNA……………………………………... 36
5-5 接合Genomic DNA to BD GenomeWalker Adaptors… 36
5-6 第一次聚合��連鎖反應(PCR)與巢氏聚合酵素連 鎖
反應………………………………………………….
37
5-7 膠體萃取(Gel Extraction)……………………………38
5-8 定序�^體的構築與選殖………………………………. 38
5-9 定序結果與分析………………………………………. 38
六、 金魚酪胺酸�※穧]在各組織間之表現模式…………………. 39
6-1 抽取金魚各組織之total RNA………………………… 39
6-2 RNA 濃度與純度的測量……………………………… 40
6-3 反轉錄(RT)……………………………………………40
6-4 即時定量聚合��連鎖反應標準曲線製作……………. 40
6-4-1 設計引子……………………………………… 40
6-4-2 小量質體製備………………………………… 40
6-4-3 質體DNA 純度和濃度計算…………………. 41
6-4-4 質體DNA 之連續稀釋………………………. 41
6-4-5 標準曲線即時定量聚合��連鎖反應………… 41
6-4-6 PCR 結果分析………………………………… 42
ix
6-5 金魚各組織酪氨酸�︷DNA 表現之即時定量聚合��
連鎖反應……………………………………………….
42
6-5-1 即時定量聚合��連鎖反應…………………… 42
6-5-2 PCR 結果分析………………………………… 42
七、 利用藥物浸泡以觀察其對於金魚、斑馬魚胚胎早期酪胺酸��
基因表現之影響…………………………………………….
43
7-1 實驗設計………………………………………………. 43
7-2 total RNA 之萃取……………………………………… 43
7-3 反轉錄(RT)……………………………………………43
7-4 即時定量聚合��連鎖反應…………………………… 43
7-5 PCR 結果分析………………………………………… 44
八、 利用藥物注射以觀察其對於金魚體表酪胺酸�※穧]表現之
影響……………………………………………………………
44
8-1 實驗設計……………………………………………… 44
8-2 total RNA 之萃取……………………………………… 44
8-3 反轉錄(RT)…………………………………………. 45
8-4 即時定量聚合��連鎖反應……………………………. 45
8-5 PCR 結果分析………………………………………… 45
九、 利用藥物添加到飼料中餵食,以觀察其對於金魚體表酪胺酸
�※穧]表現之影響…………………………………………
45
9-1 實驗設計……………………………………………… 45
9-2 total RNA 之萃取……………………………………… 46
9-3 反轉錄(RT)…………………………………………. 46
9-4 即時定量聚合��連鎖反應……………………………. 46
9-5 PCR 結果分析………………………………………… 47
十、 研究以雙基因(bi-cistronic)載體注射斑馬魚胚胎後,斑馬
魚胚胎發育體色表現模式……………………………………
47
10-1 實驗設計……………………………………………… 47
10-2 construct 設計及製作………………………………… 47
10-3 顯微注射法固定膠之製造……………………………. 48
10-4 顯微注射毛線管針之拉針……………………………. 48
10-5 顯微注射毛線管針之磨針…………………………… 48
10-6 顯微注射毛線管針之礦物油填充…………………… 48
x
10-7 顯微注射斑馬魚胚胎………………………………… 49
10-8 顯微鏡觀察斑馬魚胚胎……………………………… 49
�礡B結果………………………………………………………………… 50
一、 分子選殖金魚酪氨酸�※穧](cDNA)全長與比對…………50
二、 金魚酪氨酸�※穧]體DNA(Genomic DNA)之分子選殖… 51
三、 金魚酪氨酸�○﹞幫穧]啟動子(promoter)之分子選殖……52
四、 金魚酪氨酸�※穧]在各組織的表現………………………… 52
五、 利用藥物浸泡以觀察其對於斑馬魚胚胎早期酪氨酸�※穧]
表現之影響…………………………………………………….
52
六、 利用藥物浸泡以觀察其對於金魚胚胎早期酪氨酸�※穧]表
現之影響……………………………………………………….
53
七、 利用藥物雙���釣�醯銨、福瑞松、咖啡因皮下注射金魚,以
觀察其對於金魚體表酪氨酸�※穧]表現之影響………….
54
八、 利用藥物添加到飼料中餵食,以觀察其對於金魚體表酪氨酸
�※穧]表現之影響………………………………………….
54
九、 研究以雙基因(bi-cistronic)載體注射斑馬魚胚胎後,斑馬
魚胚胎發育體色表現模式…………………………………….
56
肆、結論………………………………………………………………… 57
一、 分子選殖金魚酪氨酸�※穧](cDNA)全長與比對…………57
二、 從各物種酪氨酸�※穧]的關係觀察分子演化上的分類……. 59
三、 金魚酪氨酸�※穧]體DNA(Genomic DNA)之分子選殖… 59
四、 金魚酪氨酸�※穧]啟動子(promoter)之分子選殖…………60
五、 金魚酪氨酸�※穧]在各組織的表現………………………… 60
六、 利用雙���釣�醯銨、福瑞松浸泡以觀察其對於斑馬魚胚胎早
期酪氨酸�※穧]表現之影響……………………………….
61
七、 利用雙���釣�醯銨、福瑞松和咖啡因浸泡以觀察其對於金魚
胚胎早期酪氨酸�※穧]表現之影響……………………….
62
八、 利用藥物雙���釣�醯銨、福瑞松、咖啡因皮下注射金魚,以
觀察其對於金魚體表酪胺酸�※穧]表現之影響………….
63
九、 利用藥物添加到飼料中餵食,以觀察其對於金魚體表酪氨酸
�※穧]表現之影響………………………………………….
64
十、 研究以雙基因(bi-cistronic)載體注射斑馬魚胚胎後,斑馬
魚胚胎發育體色表現模式…………………………………….
66
xi
十一、 未來研究方向………………………………………………… 67
伍、參考文獻…………………………………………………………. 68
陸、表…………………………………………………………………. 78
柒、圖…………………………………………………………………. 82
捌、附錄………………………………………………………………. 114
xii
表目錄
表1 目前已發表脊椎動物酪氨酸�※穧]cDNA 序列……………… 78
表2
酪氨酸基因與其他脊椎動物cDNA 序列之同一性(identities)
分析………………………………………………………………
79
表3
酪氨酸基因與其他脊椎動物胺基酸序列之相似度(similarity)
分析………………………………………………………………
80
表4 基礎飼料配方………………………………………………...…. 81
xiii
圖目錄
圖1 94 年1 月至5 月 台灣觀賞魚出口國及貿易量…………….… 82
圖2 黑色素生成代謝路徑圖……………………..…………….…… 83
圖3 老鼠黑色素生成代謝路徑圖………………..…………….…… 84
圖4 酪氨酸�&a族基因結構示意圖……………………..……….… 85
圖5 黑色素細胞生成途徑……………………………..…………… 86
圖6
金魚酪氨酸�︷DNA 序列全長與推測轉譯(deduced)胺基酸
序列……………………………..………………………….…
87
圖7 金魚酪氨酸�:enomic DNA 序列與Exon-Intron 位置圖...… 88
圖8 金魚酪氨酸�§珧吨l(promoter)序列………………….…… 89
圖9
金魚酪氨酸�※穧]轉譯胺基酸序列與其他不同生物的酪氨酸
�※穧]之胺基酸序列序列排列(alignment)…..…………...…
90
圖10
各脊椎動物酪氨酸�※穧]轉譯之胺基酸序列之演化樹型
圖…………………………………………………………………
93
圖11
即時定量聚合��鏈連鎖反應(real-time quantitative PCR)標
準曲線圖………………………………………………...…..........……
94
圖12
金魚(Carassius auratus)各組織之酪氨酸�※穧]表現模
式……………………………………………………………..…..…….
95
圖13
斑馬魚胚胎浸泡浸泡福瑞松、雙���釣�醯銨之酪氨酸�※穧]
表現模式. ………………………………………………………...……
96
圖14
斑馬魚胚胎浸泡浸泡福瑞松、雙���釣�醯銨之型態觀察照
片………………………………………………………….……….
97
圖15
斑馬魚胚胎浸泡浸泡福瑞松、雙���釣�醯銨之型態觀察照
片……………………………………………….………………..………
98
圖16
金魚胚胎浸泡浸泡雙���釣�醯銨、福瑞松、咖啡因之酪氨酸
�※穧]表現模式…………………………………………………..
99
圖17
金魚胚胎浸泡浸泡雙���釣�醯銨、福瑞松、咖啡因之型態觀
察照片……………………………………………..…………….…….
100
圖18
金魚胚胎浸泡浸泡雙���釣�醯銨、福瑞松、咖啡因之型態觀
察照片………………………………………………….………………. 101
xiv
圖19
金魚皮下注射雙���釣�醯銨、福瑞松、咖啡因之酪氨酸�※�
因表現模式……………………………………………………………
102
圖20 金魚餵食含有多巴的飼料之酪氨酸�※穧]表現模式……….…. 103
圖21 金魚餵食含有福瑞松的飼料之酪氨酸�※穧]表現模式……….. 104
圖22 金魚餵食含有正腎上腺素的飼料之酪氨酸�※穧]表現模式… 105
圖23 金魚餵食含有血清動素的飼料之酪氨酸�※穧]表現模式….… 106
圖24 金魚餵食含有咖啡因的飼料之酪氨酸�※穧]表現模式…….…. 107
圖25 金魚餵食含有麴酸的飼料之酪氨酸�※穧]表現模式………..… 108
圖26 金魚餵食含有甲基睪固酮的飼料之酪氨酸�※穧]表現模式…. 109
圖27 金魚餵食含有雌二醇的飼料之酪氨酸�※穧]表現模式…….…. 110
圖28 U6-anti-Tyr-EGFP construct map 圖….……………………..……… 111
圖29
螢光顯微鏡觀察顯微注射之斑馬魚胚胎。箭頭所指為綠色螢
光表現的位置……………………………………………………..…… 112
圖30
顯微鏡觀察顯微注射之斑馬魚胚胎。箭頭所指為斑馬魚胚胎
側線及背線的位置…………………………………………...……… 113
陳藍蓀 (2004). 全球觀賞魚進出口貿易基本格局的分析. 中國觀賞魚雜誌

黃之暘, 劉秉忠, 李國誥. (2000). 養殖新契機─觀賞魚產業回顧與前瞻. 海大漁推 29期.

Aigner B., Besenfelder U., Muller M., Brem G. (2000). Tyrosinase gene variants in different rabbit strains. Mamm Genome 11(8): 700-2.

Aksan I., Goding C. R. (1998). Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol Cell Biol 18(12): 6930-8.

Bob Fenner (2003). The physiology and behavior of color in fishes. Tropical Fish Hobbyist.

Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. (2002). Molecular biology of the Cell. 4 Edition: p959~960. Garland Science(GS) Taylor & Francis Group

Bentley N. J., Eisen T., Goding C. R. (1994). Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol 14(12): 7996-8006.

Boonanuntanasarn S., Yoshizaki G., Iwai K., Takeuchi T. (2004). Molecular cloning, gene expression in albino mutants and gene knockdown studies of tyrosinase mRNA in rainbow trout. Pigment Cell Res 17(4): 413-21.

Boonanuntanasarn S., Yoshizaki G.,Takeuchi T. (2003). Specific gene silencing using small interfering RNAs in fish embryos. Biochem Biophys Res Commun. 310(4): 1089-95.
Brackett B. G., Baranska W., Sawicki W., Koprowski H. (1971). Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci U S A 68(2): 353-7.

Brichard V., Van Pel A., Wolfel T., Wolfel C., De Plaen E., Lethe B., Coulie P.,Boon T. (1993). The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 178(2): 489-95.

Budd, P. S. and I. J. Jackson (1995). Structure of the mouse tyrosinase-related protein-2/dopachrome tautomerase (Tyrp2/Dct) gene and sequence of two novel slaty alleles. Genomics 29(1): 35-43.

Busca, R. and R. Ballotti (2000). Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13(2): 60-9.

Camacho-Hubner A., Richard C., Beermann F. (2002). Genomic structure and evolutionary conservation of the tyrosinase gene family from Fugu. Gene 285(1-2): 59-68.

Camacho-Hubner A., Rossier A., Beermann F. (2000). The Fugu rubripes tyrosinase gene promoter targets transgene expression to pigment cells in the mouse. Genesis 28(3-4): 99-105.

Camp, E., Badhwar, P., Mann, G. J., Lardelli, M. (2003). Expression analysis of a tyrosinase promoter sequence in zebrafish. Pigment Cell Res 16(2): 117-26.

Camp E. and M. Lardelli (2001). Tyrosinase gene expression in zebrafish embryos. Dev Genes Evol 211(3): 150-3.

Cardwell J.R. and Liley N.R.(1991). Hormonal control of sex and color change in the stoplight parrotfish, Sparisoma viride. General and Comparative Endocrinology 81(1): 7-20

Cavaco J.E., Bogerd J., Goos H. and Schulz R.W. ( 2001). Testosterone inhibits 11-ketotestosterone-induced spermatogenesis in African catfish (Clarias gariepinus). Biol Reprod. Dec;65(6):1807-12.

Chintamaneni C. D., Halaban R., Kobayashi Y., Witkop C. J. Jr., Kwon, B. S. (1991). A single base insertion in the putative transmembrane domain of the tyrosinase gene as a cause for tyrosinase-negative oculocutaneous albinism. Proc Natl Acad Sci U S A 88(12): 5272-6.

Chou C. Y., Horng L. S., Tsai, H. J. (2001). Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation. Transgenic Res 10(4): 303-15.

Choudhary M. I., Sultan S., Khan, M. T., Rahman, A. U. (2005). Microbial transformation of 17alpha-ethynyl- and 17alpha-ethylsteroids, and tyrosinase inhibitory activity of transformed products. Steroids 70(12): 798-802.

Compere S. J., Baldacci P.,Jaenisch R. (1988). Oncogenes in transgenic mice. Biochim Biophys Acta 948(2): 129-49.

Crick, F. H. (1966). Codon--anticodon pairing: the wobble hypothesis. J Mol Biol 19(2): 548-55.

Etkin, L. D. and B. Pearman (1987). Distribution, expression and germ line transmission of exogenous DNA sequences following microinjection into Xenopus laevis eggs. Development 99(1): 15-23.

Etkin L. D., Pearman B., Ansah-Yiadom R. (1987). Replication of injected DNA templates in Xenopus embryos. Exp Cell Res 169(2): 468-77.

Fire A., Xu S.,Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669): 806-11.

Ganss R.,Schutz G.,Beermann F. (1994). The mouse tyrosinase gene. Promoter modulation by positive and negative regulatory elements. J Biol Chem 269(47): 29808-16.

Gekeler V., Boer R., Ise W., Sanders K. H., Schachtele C., Beck, J. (1995). The specific bisindolylmaleimide PKC-inhibitor GF 109203X efficiently modulates MRP-associated multiple drug resistance. Biochem Biophys Res Commun 206(1): 119-26.

Gong Z., Wan H., Tay T. L., Wang H., Chen M., Yan T. (2003). Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem Biophys Res Commun 308(1): 58-63.

Gordon J. W., Scangos G. A., Plotkin D. J., Barbosa J. A., Ruddle F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77(12): 7380-4.

Hou L., Panthier J. J., Arnheiter H. (2000). Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Development 127(24): 5379-89.

Hyodo-Taguchi Y., Winkler C., Kurihara Y. ,Schartl A., Schartl M (1997). Phenotypic rescue of the albino mutation in the medakafish (Oryzias latipes) by a mouse tyrosinase transgene. Mech Dev 68(1-2): 27-35.

Ide, C. (1972). The development of melanosomes in the pigment epithelium of the chick embryo. Z Zellforsch Mikrosk Anat 131(2): 171-86.

Inagaki H., Bessho Y.,Koga A., Hori H. (1994). Expression of the tyrosinase-encoding gene in a colorless melanophore mutant of the medaka fish, Oryzias latipes. Gene 150(2): 319-24.

Inagaki H., Koga A., Bessho Y., Hori H. (1998). The tyrosinase gene from medakafish: transgenic expression rescues albino mutation. Pigment Cell Res 11(5): 283-90.

Jackson I. J., Chambers D. M., Budd P. S., Johnson R. (1991). The tyrosinase-related protein-1 gene has a structure and promoter sequence very different from tyrosinase. Nucleic Acids Res 19(14): 3799-804.

Jaenisch R. (1988). Transgenic animals. Science 240(4858): 1468-74.

Karlsson J., von Hofsten J., Olsson P. E. (2001). Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol (NY) 3(6): 522-7.

Kawakami K., Koga A., Hori H.,Shima A. (1998). Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225(1-2): 17-22.

Koga A. and Hori H. (1999). Homogeneity in the structure of the medaka fish transposable element Tol2. Genet Res 73(1): 7-14.

Koga A. and Hori H. (2001). The Tol2 transposable element of the medaka fish: an active DNA-based element naturally occurring in a vertebrate genome. Genes Genet Syst 76(1): 1-8.

Koga A., Inagaki H., Bessho Y., Hori H. (1995). Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Mol Gen Genet 249(4): 400-5.

Kwon B. S., Halaban R., Chintamaneni C. (1989). Molecular basis of mouse Himalayan mutation. Biochem Biophys Res Commun 161(1): 252-60.

Kwon B. S., Wakulchik M., Haq A. K., Halaban R., Kestler D. (1988). Sequence analysis of mouse tyrosinase cDNA and the effect of melanotropin on its gene expression. Biochem Biophys Res Commun 153(3): 1301-9.

Lavado A., Olivares C., Garcia-Borron J. C., Montoliu L. (2005). Molecular basis of the extreme dilution mottled mouse mutation: a combination of coding and noncoding genomic alterations. J Biol Chem 280(6): 4817-24.

Lee Y. S., Park J. H., Kim M. H.. Seo S. H., Kim H. J. (2006). Synthesis of tyrosinase inhibitory kojic acid derivative. Arch Pharm (Weinheim) 339(3): 111-4.

Lowings P., Yavuzer U., Goding C. R. (1992). Positive and negative elements regulate a melanocyte-specific promoter. Mol Cell Biol 12(8): 3653-62.

Lu J. K., Chen T. T., Chrisman C. L., Andrisani O. M., Dixon, J. E. (1992). Integration, expression and germ-line transmission of foreign growth hormone genes in medaka (Oryzias latipes). Mol Mar Biol Biotechnol 1(4-5): 366-75.

Mannino R. J. and Gould-Fogerite S. (1988). Liposome mediated gene transfer. Biotechniques 6(7): 682-90.

Mochii M., Iio A., Yamamoto H., Takeuchi T., Eguchi G. (1992). Isolation and characterization of a chicken tyrosinase cDNA. Pigment Cell Res 5(4): 162-7.

Mochii M., Ono T., Matsubara Y., Eguchi G. (1998). Spontaneous transdifferentiation of quail pigmented epithelial cell is accompanied by a mutation in the Mitf gene. Dev Biol 196(2): 145-59.

Muller F., Lele Z., Varadi L., Menczel L., Orban L. (1993). Efficient transient expression system based on square pulse electroporation and in vivo luciferase assay of fertilized fish eggs. FEBS Lett 324(1): 27-32.

Murisier F. and Beermann F. (2006). Genetics of pigment cells: lessons from the tyrosinase gene family. Histol Histopathol 21(5): 567-78.

Neumann E., Schaefer-Ridder M., Wang Y., Hofschneider P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J 1(7): 841-5.

NJ Lowe, N. S., MA Pathak (Eds). (1993). Sunscreens: development, evaluation, and regulatory aspect. New York: Marcel Dekker: 538~588.

Okumura N., Hayashi T., Sekikawa H., Matsumoto T., Mikawa A., Hamasima N., Awata T. (2005). Sequences and mapping of genes encoding porcine tyrosinase (TYR) and tyrosinase-related proteins (TYRP1 and TYRP2). Anim Genet 36(6): 513-6.

Ozato K., Wakamatsu Y., Inoue K. (1992). Medaka as a model of transgenic fish. Mol Mar Biol Biotechnol 1(4-5): 346-54.

Ozeki H., Ito S., Wakamatsu K., Ishiguro I., (1997). Chemical characterization of pheomelanogenesis starting from dihydroxyphenylalanine or tyrosine and cysteine. Effects of tyrosinase and cysteine concentrations and reaction time. Biochim Biophys Acta 1336(3): 539-48.

Park H. Y., Lee J., Gonzalez S.,Middelkamp-Hup M. A.,Kapasi S.,Peterson S., Gilchrest, B. A. (2004). Topical application of a protein kinase C inhibitor reduces skin and hair pigmentation. J Invest Dermatol 122(1): 159-66.

Park H. Y., Wu C., Yonemoto L., Murphy-Smith M., Wu H., Stachur C. M., Gilchrest B. A. (2006). MITF mediates cAMP-induced protein kinase C-beta expression in human melanocytes. Biochem J 395(3): 571-8.

Parker, G. (1948). Animal Color Changes and their Neurohumours. (Cambridge: Cambridge University Press), pp. 1–377.

Powers D. A., Hereford L., Cole T., Chen T. T., Lin C. M., Kight K., Creech K. Dunham R. (1992). Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1(4-5): 301-8.

Ranson M., Posen S., Mason R. S (1988). Human melanocytes as a target tissue for hormones: in vitro studies with 1 alpha-25, dihydroxyvitamin D3, alpha-melanocyte stimulating hormone, and beta-estradiol. J Invest Dermatol 91(6): 593-8.

Ruppert S., Muller G., Kwon B., Schutz G. (1988). Multiple transcripts of the mouse tyrosinase gene are generated by alternative splicing. Embo J 7(9): 2715-22.

Sanchez-Ferrer A., Rodriguez-Lopez, J. N., Garcia-Canovas F., Garcia-Carmona F. (1995). Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247(1): 1-11.

Sato S., Tanaka M., Miura H., Ikeo K., Gojobori T., Takeuchi T., Yamamoto H. (2001). Functional conservation of the promoter regions of vertebrate tyrosinase genes. J Investig Dermatol Symp Proc 6(1): 10-8.

Scarparo A. C., Sumida D. H., Patrao M. T., Avellar M. C.,Visconti M. A., Maria de Lauro Castrucci, A. (2004). Catecholamine effects on human melanoma cells evoked by alpha1-adrenoceptors. Arch Dermatol Res 296(3): 112-9.

Schmutz S. M., Berryere T. G., Ciobanu D. C., Mileham A. J., Schmidtz B. H., Fredholm M. (2004). A form of albinism in cattle is caused by a tyrosinase frameshift mutation. Mamm Genome 15(1): 62-7.

Shibahara S., Tomita Y., Tagami H., Muller R. M., Cohen T. (1988). Molecular basis for the heterogeneity of human tyrosinase. Tohoku J Exp Med 156(4): 403-14.

Soengas J.L. and Aldegunde M.(2004). Brain glucose and insulin: effects on food intake and brain biogenic amines of rainbow trout. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Aug;190(8):641-9.

Strausberg RL et al., Mammalian Gene Collection Program Team. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci US A. 99(26): 16899-903.

Sturm R. A., O'Sullivan B. J., Box N. F., Smith A. G., Smit S. E., Puttick E. R., Parsons P. G., Dunn I. S. (1995). Chromosomal structure of the human TYRP1 and TYRP2 loci and comparison of the tyrosinase-related protein gene family. Genomics 29(1): 24-34.

Takase M., Miura I., Nakata A., Takeuchi T., Nishioka M. (1992). Cloning and sequencing of the cDNA encoding tyrosinase of the Japanese pond frog, Rana nigromaculata. Gene 121(2): 359-63.

Takeda A., Tomita Y., Okinaga S., Tagami H., Shibahara S., (1989). Functional analysis of the cDNA encoding human tyrosinase precursor. Biochem Biophys Res Commun 162(3): 984-90.

Tobita-Teramoto T., Jang G. Y., Kino K., Salter D. W., Brumbaugh J., Akiyama T. (2000). Autosomal albino chicken mutation (ca/ca) deletes hexanucleotide (-deltaGACTGG817) at a copper-binding site of the tyrosinase gene. Poult Sci 79(1): 46-50.

Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. (1991). The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266(24): 15771-81.

Tsai A., Maehara K., Iizuka R. (1992). Loss of catecholaminergic neuron in the hypothalamus of multiple system atrophy. Rinsho Shinkeigaku 32(2): 125-30.

Vander W. C. and Johnson J. C. (1970). Interaction of serotonin with the catecholamines. I. Inhibition of dopamine and norepinephrine oxidation. Biochem Pharmacol 19(6): 1991-2000.

Wellmann H., Kaltschmidt B., Kaltschmidt C. (1999). Optimized protocol for biolistic transfection of brain slices and dissociated cultured neurons with a hand-held gene gun. J Neurosci Methods 92(1-2): 55-64.

Westerfield, M. (2000) The Zebrafish Book: A guide for the laboratory use of Zebrafish (Danio rerio) (Univ. of Oregon Press, Eugene).

Wilson, M. J. and Spaziani E. (1973). Testosterone regulation of pigmentation in scrotal epidermis of the rat. Z Zellforsch Mikrosk Anat 140(4): 451-8.

Wu, H. and Park H. Y. (2003). Protein kinase C-beta-mediated complex formation between tyrosinase and TRP-1. Biochem Biophys Res Commun 311(4): 948-53.

Yamamoto H., Takeuchi S., Kudo T., Makino K., Nakata A. Shinoda T. and Takeuchi T. (1987). Cloning and sequencing of mouse tyrosinase cDNA. The Japanese Journal of Genetics 62: 271-274.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top