跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪國勝
研究生(外文):Kuo-Sheng Hung
論文名稱:使用直接演化法製造新式Candidarugosa脂肪酶和鑑定新式脂肪酶
論文名稱(外文):Directed Evolution of Candida rugosa lipase gene and characterization of the Novel lipases
指導教授:唐世杰
指導教授(外文):Shye-Jye Tang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:77
中文關鍵詞:脂肪酶酵素直接演化法熱安定性
外文關鍵詞:error-prone PCRHeat-shock protein
相關次數:
  • 被引用被引用:1
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
酵母菌Candida rugosa所產生的五種菌體外脂肪酶 (LIP1~ LIP5),在序列上具有高度的相似性,但卻有不同的基質特異性,因此可以用蛋白質工程的方式改變CRL的序列,以研究序列與結構活性間的關係。實驗室先前以基因重組的方式,重組LIPF和LIP4産生13組的新式脂肪酶NL-A ~ NL-M。所產生的各式脂肪酶的經測試後,可顯示CRL的序列結構及基質特異性的具有相關性。
本論文進一步使用直接演化法 (direct evolution) 對重組新式脂肪酶基因進行改造,探討以了解CRL的序列與結構及基質特異性的相關性。將NL-B和NL-L重組形成新式脂肪酶,對於tributyrin (C4:0)具有高活行,但對olive oil則表現出低活性。結果顯示新式脂肪酶與NL-B和NL-L具有不同的基直特異性。另外,使用錯誤傾向聚合酶鏈反應 (error-prone PCR) 以NL-J為模版 (template) 進行研究,發現序列的突變,對tributyrin (C4:0) plate的酵素活性都有不同的改變。
實驗室先前利用定點突變的方式將新式脂肪酶中的NL-J突變成NLJF314N,其胺基酸序列由F314突變成N314,熱安定性相較於原NL-J 來的高。為提高熱安定性,本論文進一步將Heat-shock protein融合在NLJF314N的N端,發現其耐熱性較原NLJF314N效果提升了1.6倍。
The yeast Candida rugosa produces five extracellular lipases (LIP1 ~ LIP5) , showing high homology in sequence but partial difference in the substrate specificity. Changing LIP sequence by site-directed protein engineering was undertaken in this study to examine the relationship between CRL sequences and enzyme activities. Thirteen chimera lipases NL-A ~ NL-M derived from LIP4 and LIPF was previously produced by homologous recombination. Compared as these novel lipases enzyme activity, we demonstrate that lipases has a strong relationship between substrate specificity and protein sequences.
To understand future relationship between CRL activity and substrate specificity, the method of direct evolution to generate novel lipases gene was application in this study. NEW lipase, produced from the recombination of NL-B and NL-L, showed the different substrate specificity as compared with NL-B as well as NL-L. The lipase activity of NEW lipase was high in the substrate of tributyrin (C4:0) and low in olive oil. Random mutation lipase generated from NL-J by error-prone PCR were observed in the tributyrin (C4:0) plate and They showed different lipase activity.
To improve thermal stability of lipase by introducing glycosylation, NLJF314N generated from alternating Phe314 into Asn, showed higher thermostability than NL-J. For further improvement of thermal stability, NLJF314N fused with heat-shock protein in the N terminal to generate Hsp-NLJ-F3144N. The lipase exhibit more thermal stability than NLJF314N and T1/2 of HspJF314N was increased 1.6 folds.
目錄………………………………………………………………………1
中文摘要…………………………………………………………………2
英文摘要…………………………………………………………………3
序論………………………………………………………………………4
一、脂肪酶的用…………………………………………………………4
二、脂肪酶的生化特性…………………………………………………6
三、脂肪酶的結構特性…………………………………………………8
四、Candida rugosa lipase (CRL)…………………………………10
五、C. rugosa脂肪酶的結構特性……………………………………12
六、研究原起……………………………………………………………16
七、酵素直接演化法……………………………………………………19
八、實驗方向……………………………………………………………21

材料與方法………………………………………………………………23
一、材料…………………………………………………………………23
二、實驗方法……………………………………………………………28

實驗結果…………………………………………………………………39
論…………………………………………………………………………43
參考獻……………………………………………………………………49
圖…………………………………………………………………………56
附錄………………………………………………………………………65
Benjamin, S., & Pandey, A. (1998). Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast, 14, 1069-1087.

Brocca, S., Persson, M., Wehtje, E., Adlercreutz, P., Alberghina, L., & Lotti, M. (2000). Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from candida rugosa. Protein Sci, 9, 985-990.

Brocca, S., Secundo, F., Ossola, M., Alberghina, L., Carrea, G., & Lotti, M. (2003). Sequence of the lid affects activity and specificity of candida rugosa lipase isoenzymes. Protein Sci, 12, 2312-2319.

Cadwell, R. C., & Joyce, G. F. (1992). Randomization of genes by pcr mutagenesis. PCR Methods Appl, 2, 28-33

Cereghino, G. P., Cereghino, J. L., Ilgen, C., & Cregg, J. M. (2002). Production of recombinant proteins in fermenter cultures of the yeast pichia pastoris. Curr Opin Biotechnol, 13, 329-332.

Chang, S. W., Lee, G. C., & Shaw, J. F. (2006). Codon optimization of candida rugosa lip1 gene for improving expression in pichia pastoris and biochemical characterization of the purified recombinant lip1 lipase. J Agric Food Chem, 54, 815-822.

Chang, S. W., Shieh, C. J., Lee, G. C., & Shaw, J. F. (2005). Multiple mutagenesis of the candida rugosa lip1 gene and optimum production of recombinant lip1 expressed in pichia pastoris. Appl Microbiol Biotechnol, 67 , 215-224.

Chapus, C., Semeriva, M., Bovier-Lapierre, C., & Desnuelle, P. (1976). Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry, 15 , 4980-4987.

Cygler, M., & Schrag, J. D. (1999). Structure and conformational flexibility of candida rugosa lipase. Biochim Biophys Acta, 1441 , 205-214.

Diczfalusy, M. A., & Alexson, S. E. (1996). Isolation and characterization of novel long-chain acyl-coa thioesterase/carboxylesterase isoenzymes from candida rugosa. Arch Biochem Biophys, 334 , 104-112.

Dominguez de Maria, P., Sanchez-Montero, J. M., Sinisterra, J. V., & Alcantara, A. R. (2006). Understanding candida rugosa lipases: An overview. Biotechnol Adv, 24 , 180-196.

Ferrato, F., Carriere, F., Sarda, L., & Verger, R. (1997). A critical reevaluation of the phenomenon of interfacial activation. Methods Enzymol, 286, 327-347.

Gillis, A. (1988). Research discovers new roles for lipase. JAOCS, 65 847-852.

Grochulski, P., Bouthillier, F., Kazlauskas, R. J., Serreqi, A. N., Schrag, J. D., Ziomek, E., et al. (1994). Analogs of reaction intermediates identify a unique substrate binding site in candida rugosa lipase. Biochemistry, 33 , 3494-3500.

Hide, W. A., Chan, L., & Li, W. H. (1992). Structure and evolution of the lipase superfamily. J Lipid Res, 33 , 167-178.

Jacobs, D. J., Livesay, D. R., Hules, J., & Tasayco, M. L. (2006). Elucidating quantitative stability/flexibility relationships within thioredoxin and its fragments using a distance constraint model. J Mol Biol, 358, 882-904.

Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol, 53, 315-351.

Jaeger, K. E., Eggert, T., Eipper, A., & Reetz, M. T. (2001). Directed evolution and the creation of enantioselective biocatalysts. Appl Microbiol Biotechnol, 55 , 519-530.

Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol, 16 (9), 396-403.

Kaiser, R., Erman, M., Duax, W. L., Ghosh, D., & Jornvall, H. (1994). Monomeric and dimeric forms of cholesterol esterase from candida cylindracea. Primary structure, identity in peptide patterns, and additional microheterogeneity. FEBS Lett, 337 , 123-127.

Komeda, H., Ishikawa, N., & Asano, Y. (2003). Enhancement of the thermostability and catalytic activity of d-stereospecific amino acid amidase from ochrobactrum anthropi sv3 by directed evolution. J. Mol. Catal. B: Enz, 21 , 283-290.

Ladbury, J. E., Wynn, R., Hellinga, H. W., & Sturtevant, J. M. (1993). Stability of oxidized escherichia coli thioredoxin and its dependence on protonation of the aspartic acid residue in the 26 position. Biochemistry, 32 , 7526-7530.

LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., & McCoy, J. M. (1993). A thioredoxin gene fusion expression system that circumvents inclusion body formation in the e. Coli cytoplasm. Biotechnology (N Y), 11 , 187-193.

Liebeton, K., Zonta, A., Schimossek, K., Nardini, M., Lang, D., Dijkstra, B. W., et al. (2000). Directed evolution of an enantioselective lipase. Chem Biol, 7 , 709-718.

Lingen, B., Grotzinger, J., Kolter, D., Kula, M. R., & Pohl, M. (2002). Improving the carboligase activity of benzoylformate decarboxylase from pseudomonas putida by a combination of directed evolution and site-directed mutagenesis. Protein Eng, 15 , 585-593.

Liou, Y. C., Marangoni, A. G., & Yada, R. Y. (1998). Aggregation behavior of candida rugosa lipase. Food Research International, 31 , 243-248.

Lotti, M., Tramontano, A., Longhi, S., Fusetti, F., Brocca, S., Pizzi, E., et al. (1994). Variability within the candida rugosa lipases family. Protein Eng, 7 , 531-535.

Lu, Z., DiBlasio-Smith, E. A., Grant, K. L., Warne, N. W., LaVallie, E. R., Collins-Racie, L. A., et al. (1996). Histidine patch thioredoxins. Mutant forms of thioredoxin with metal chelating affinity that provide for convenient purifications of thioredoxin fusion proteins. J Biol Chem, 271 , 5059-5065.

Mancheno, J. M., Pernas, M. A., Martinez, M. J., Ochoa, B., Rua, M. L., & Hermoso, J. A. (2003). Structural insights into the lipase/esterase behavior in the candida rugosa lipases family: Crystal structure of the lipase 2 isoenzyme at 1.97a resolution. J Mol Biol, 332 , 1059-1069.

Pathak, D., & Ollis, D. (1990). Refined structure of dienelactone hydrolase at 1.8 a. J Mol Biol, 214 , 497-525.

Pleiss, J., Fischer, M., & Schmid, R. D. (1998). Anatomy of lipase binding sites: The scissile fatty acid binding site. Chem Phys Lipids, 93 , 67-80.

Rua, M. L., Diaz-Maurino, T., Otero, C., & Ballesteros, A. (1992). Isoenzymes of lipase from candida cylindracea. Studies related to carbohydrate composition. Ann N Y Acad Sci, 672, 20-23.

Schmitt, J., Brocca, S., Schmid, R. D., & Pleiss, J. (2002). Blocking the tunnel: Engineering of candida rugosa lipase mutants with short chain length specificity. Protein Eng, 15 , 595-601.

Schrag, J. D., Li, Y. G., Wu, S., & Cygler, M. (1991). Ser-his-glu triad forms the catalytic site of the lipase from geotrichum candidum. Nature, 351 (6329), 761-764.

Smith, P. A., Tripp, B. C., DiBlasio-Smith, E. A., Lu, Z., LaVallie, E. R., & McCoy, J. M. (1998). A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in escherichia coli. Nucleic Acids Res, 26 , 1414-1420.

Stefankova, P., Kollarova, M., & Barak, I. (2005). Thioredoxin - structural and functional complexity. Gen Physiol Biophys, 24 , 3-11.

Tang, S. J., Shaw, J. F., Sun, K. H., Sun, G. H., Chang, T. Y., Lin, C. K., et al. (2001). Recombinant expression and characterization of the candida rugosa lip4 lipase in pichia pastoris: Comparison of glycosylation, activity, and stability. Arch Biochem Biophys, 387 , 93-98.

Tang, S. J., Sun, K. H., Sun, G. H., Chang, T. Y., & Lee, G. C. (2000). Recombinant expression of the candida rugosa lip4 lipase in escherichia coli. Protein Expr Purif, 20 , 308-313.

Tenkanen, M., Kontkanen, H., Isoniemi, R., Spetz, P., & Holmbom, B. (2002). Hydrolysis of steryl esters by a lipase (lip3) from candida rugosa. Appl Microbiol Biotechnol, 60 , 120-127.

Yokogawa, T., Suzuki, T., Ueda, T., Mori, M., Ohama, T., Kuchino, Y., et al. (1992). Serine trna complementary to the nonuniversal serine codon cug in candida cylindracea: Evolutionary implications. Proc Natl Acad Sci U S A, 89, 7408-7411.

Wan, L., Twitchett, M. B., Eltis, L. D., Mauk, A. G., & Smith, M. (1998). In vitro evolution of horse heart myoglobin to increase peroxidase activity. Proc Natl Acad Sci U S A, 95 , 12825-12831.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top