|
Benjamin, S., & Pandey, A. (1998). Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast, 14, 1069-1087.
Brocca, S., Persson, M., Wehtje, E., Adlercreutz, P., Alberghina, L., & Lotti, M. (2000). Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from candida rugosa. Protein Sci, 9, 985-990.
Brocca, S., Secundo, F., Ossola, M., Alberghina, L., Carrea, G., & Lotti, M. (2003). Sequence of the lid affects activity and specificity of candida rugosa lipase isoenzymes. Protein Sci, 12, 2312-2319.
Cadwell, R. C., & Joyce, G. F. (1992). Randomization of genes by pcr mutagenesis. PCR Methods Appl, 2, 28-33
Cereghino, G. P., Cereghino, J. L., Ilgen, C., & Cregg, J. M. (2002). Production of recombinant proteins in fermenter cultures of the yeast pichia pastoris. Curr Opin Biotechnol, 13, 329-332.
Chang, S. W., Lee, G. C., & Shaw, J. F. (2006). Codon optimization of candida rugosa lip1 gene for improving expression in pichia pastoris and biochemical characterization of the purified recombinant lip1 lipase. J Agric Food Chem, 54, 815-822.
Chang, S. W., Shieh, C. J., Lee, G. C., & Shaw, J. F. (2005). Multiple mutagenesis of the candida rugosa lip1 gene and optimum production of recombinant lip1 expressed in pichia pastoris. Appl Microbiol Biotechnol, 67 , 215-224.
Chapus, C., Semeriva, M., Bovier-Lapierre, C., & Desnuelle, P. (1976). Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry, 15 , 4980-4987.
Cygler, M., & Schrag, J. D. (1999). Structure and conformational flexibility of candida rugosa lipase. Biochim Biophys Acta, 1441 , 205-214.
Diczfalusy, M. A., & Alexson, S. E. (1996). Isolation and characterization of novel long-chain acyl-coa thioesterase/carboxylesterase isoenzymes from candida rugosa. Arch Biochem Biophys, 334 , 104-112.
Dominguez de Maria, P., Sanchez-Montero, J. M., Sinisterra, J. V., & Alcantara, A. R. (2006). Understanding candida rugosa lipases: An overview. Biotechnol Adv, 24 , 180-196.
Ferrato, F., Carriere, F., Sarda, L., & Verger, R. (1997). A critical reevaluation of the phenomenon of interfacial activation. Methods Enzymol, 286, 327-347.
Gillis, A. (1988). Research discovers new roles for lipase. JAOCS, 65 847-852.
Grochulski, P., Bouthillier, F., Kazlauskas, R. J., Serreqi, A. N., Schrag, J. D., Ziomek, E., et al. (1994). Analogs of reaction intermediates identify a unique substrate binding site in candida rugosa lipase. Biochemistry, 33 , 3494-3500.
Hide, W. A., Chan, L., & Li, W. H. (1992). Structure and evolution of the lipase superfamily. J Lipid Res, 33 , 167-178.
Jacobs, D. J., Livesay, D. R., Hules, J., & Tasayco, M. L. (2006). Elucidating quantitative stability/flexibility relationships within thioredoxin and its fragments using a distance constraint model. J Mol Biol, 358, 882-904.
Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol, 53, 315-351.
Jaeger, K. E., Eggert, T., Eipper, A., & Reetz, M. T. (2001). Directed evolution and the creation of enantioselective biocatalysts. Appl Microbiol Biotechnol, 55 , 519-530.
Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol, 16 (9), 396-403.
Kaiser, R., Erman, M., Duax, W. L., Ghosh, D., & Jornvall, H. (1994). Monomeric and dimeric forms of cholesterol esterase from candida cylindracea. Primary structure, identity in peptide patterns, and additional microheterogeneity. FEBS Lett, 337 , 123-127.
Komeda, H., Ishikawa, N., & Asano, Y. (2003). Enhancement of the thermostability and catalytic activity of d-stereospecific amino acid amidase from ochrobactrum anthropi sv3 by directed evolution. J. Mol. Catal. B: Enz, 21 , 283-290.
Ladbury, J. E., Wynn, R., Hellinga, H. W., & Sturtevant, J. M. (1993). Stability of oxidized escherichia coli thioredoxin and its dependence on protonation of the aspartic acid residue in the 26 position. Biochemistry, 32 , 7526-7530.
LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., & McCoy, J. M. (1993). A thioredoxin gene fusion expression system that circumvents inclusion body formation in the e. Coli cytoplasm. Biotechnology (N Y), 11 , 187-193.
Liebeton, K., Zonta, A., Schimossek, K., Nardini, M., Lang, D., Dijkstra, B. W., et al. (2000). Directed evolution of an enantioselective lipase. Chem Biol, 7 , 709-718.
Lingen, B., Grotzinger, J., Kolter, D., Kula, M. R., & Pohl, M. (2002). Improving the carboligase activity of benzoylformate decarboxylase from pseudomonas putida by a combination of directed evolution and site-directed mutagenesis. Protein Eng, 15 , 585-593.
Liou, Y. C., Marangoni, A. G., & Yada, R. Y. (1998). Aggregation behavior of candida rugosa lipase. Food Research International, 31 , 243-248.
Lotti, M., Tramontano, A., Longhi, S., Fusetti, F., Brocca, S., Pizzi, E., et al. (1994). Variability within the candida rugosa lipases family. Protein Eng, 7 , 531-535.
Lu, Z., DiBlasio-Smith, E. A., Grant, K. L., Warne, N. W., LaVallie, E. R., Collins-Racie, L. A., et al. (1996). Histidine patch thioredoxins. Mutant forms of thioredoxin with metal chelating affinity that provide for convenient purifications of thioredoxin fusion proteins. J Biol Chem, 271 , 5059-5065.
Mancheno, J. M., Pernas, M. A., Martinez, M. J., Ochoa, B., Rua, M. L., & Hermoso, J. A. (2003). Structural insights into the lipase/esterase behavior in the candida rugosa lipases family: Crystal structure of the lipase 2 isoenzyme at 1.97a resolution. J Mol Biol, 332 , 1059-1069.
Pathak, D., & Ollis, D. (1990). Refined structure of dienelactone hydrolase at 1.8 a. J Mol Biol, 214 , 497-525.
Pleiss, J., Fischer, M., & Schmid, R. D. (1998). Anatomy of lipase binding sites: The scissile fatty acid binding site. Chem Phys Lipids, 93 , 67-80.
Rua, M. L., Diaz-Maurino, T., Otero, C., & Ballesteros, A. (1992). Isoenzymes of lipase from candida cylindracea. Studies related to carbohydrate composition. Ann N Y Acad Sci, 672, 20-23.
Schmitt, J., Brocca, S., Schmid, R. D., & Pleiss, J. (2002). Blocking the tunnel: Engineering of candida rugosa lipase mutants with short chain length specificity. Protein Eng, 15 , 595-601.
Schrag, J. D., Li, Y. G., Wu, S., & Cygler, M. (1991). Ser-his-glu triad forms the catalytic site of the lipase from geotrichum candidum. Nature, 351 (6329), 761-764.
Smith, P. A., Tripp, B. C., DiBlasio-Smith, E. A., Lu, Z., LaVallie, E. R., & McCoy, J. M. (1998). A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in escherichia coli. Nucleic Acids Res, 26 , 1414-1420.
Stefankova, P., Kollarova, M., & Barak, I. (2005). Thioredoxin - structural and functional complexity. Gen Physiol Biophys, 24 , 3-11.
Tang, S. J., Shaw, J. F., Sun, K. H., Sun, G. H., Chang, T. Y., Lin, C. K., et al. (2001). Recombinant expression and characterization of the candida rugosa lip4 lipase in pichia pastoris: Comparison of glycosylation, activity, and stability. Arch Biochem Biophys, 387 , 93-98.
Tang, S. J., Sun, K. H., Sun, G. H., Chang, T. Y., & Lee, G. C. (2000). Recombinant expression of the candida rugosa lip4 lipase in escherichia coli. Protein Expr Purif, 20 , 308-313.
Tenkanen, M., Kontkanen, H., Isoniemi, R., Spetz, P., & Holmbom, B. (2002). Hydrolysis of steryl esters by a lipase (lip3) from candida rugosa. Appl Microbiol Biotechnol, 60 , 120-127.
Yokogawa, T., Suzuki, T., Ueda, T., Mori, M., Ohama, T., Kuchino, Y., et al. (1992). Serine trna complementary to the nonuniversal serine codon cug in candida cylindracea: Evolutionary implications. Proc Natl Acad Sci U S A, 89, 7408-7411.
Wan, L., Twitchett, M. B., Eltis, L. D., Mauk, A. G., & Smith, M. (1998). In vitro evolution of horse heart myoglobin to increase peroxidase activity. Proc Natl Acad Sci U S A, 95 , 12825-12831.
|