跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖信吉
研究生(外文):Hsin-Chi Liao
論文名稱:斑馬魚KLF8在左右不對稱性及心臟發育之功能性研究
論文名稱(外文):Functional analysis of zebrafish KLF8 on left-right asymmetry and heart development
指導教授:黃聲蘋
指導教授(外文):Sheng-Ping L. Hwang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:110
中文關鍵詞:斑馬魚心臟左右不對稱
外文關鍵詞:zebrafishheartleft-right asymmetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室早期選殖到一斑馬魚KLF8 cDNA,全長為1763 bp,可轉譯出348 個胺基酸,經胺基酸序列比對顯示與人類的KLF8有63%的相似性。且斑馬魚KLF8靠近C端有3個krüpple-type zinc finger domain,而N端有一個repressor motif (PVALS/T)。當以antisense oligomer morpholino knockdown實驗來分析KLF8的功能時,在morphant 胚胎可觀察到圍心膜腫大及心臟形態不正常的情形,因此本論文的主要目的在研究斑馬魚KLF8基因在心臟發育所扮演的功能。利用不同KLF8反意寡核酸抑制KLF8蛋白質之形成,造成24 hpf (hour post fertilization) morphant腦部中後腦交界結構凌亂及中腦腦室區域縮小,而在28 hpf明顯觀察到心管變短,48 hpf心臟looping出現問題,72 hpf心臟looping不完全,心室與心房維持anterior-posterior方向,分為D-looping但不完全型態、L-looping、no-looping三種型態。同時本實驗發現斑馬魚胚胎注射KLF8-MO1濃度越高,造成心臟looping缺損、腹部有血液堆積的比例越高,導致心室與心房之腔體明顯變小,具有劑量相關(dose-dependent)的特性。進一步以全覆式原位雜合反應檢視心房或心室的標識基因,amhc、cmlc2在KLF8基因表現被抑制之胚胎中變化情形,結果顯示amhc及cmlc2表現量有增加的情形並確認心臟有D-looping但不完全型態、L-looping及no-looping三種型態。另外亦檢視與心臟發育相關的基因的變化情形,nkx2.5在24 hpf morphant心管表現量有增加的情形,且心管的jogging亦呈現左右不對稱的情形。而BMP2b在gastrula morphant的表現量則不受影響。由於KLF8 mRNA並不表現在心臟,且從學長的實驗結果顯示KLF8-MO1的morphant其肝、腸及外分泌胰臟有左右顛倒現象。脊椎動物左右側方向的決定會影響到臟器正常的發育過程。由文獻中得知若脊椎動物左右軸(L/R axis)不對稱的建立受到改變則會產生一些先天性的心臟疾病。因此我亦檢視與左右軸不對稱性建立相關的基因,主要觀察midline的結構及Nodal signaling pathways下游相關基因在KLF8-MO1 morphant中是否受到影響。結果顯示flh、ntl在脊索的表現量不受影響,而gsc在索前板表現量及情形與野生種胚胎一樣。cyc在Polster、索前板以及神經外胚層部位的表現量與野生種同期胚胎一樣。oep在索前板、脊索表現量與野生種同期胚胎一樣。lefty1在索前板表現量有增加情形,而在體節形成的後期,left1並沒表現在左側間腦以及左側側板中胚層。而lefty2在索前板以及底板表現量與野生種相同,但在體節形成的後期,lefty2並沒表現在左側側板中胚層。且pitx2和lefty1一樣沒有表現在左側間腦。綜合以上的結果,斑馬魚KLF8會調控與左右軸不對稱建立有關的基因進而影響心臟的發育。此外,我們並製作KLF8多株抗體來確認KLF8-MO的專一性,Western blot實驗結果顯示,KLF8-MO1和KLF8-MO2會抑制斑馬魚胚胎內KLF8的轉譯作用,而KLF8- 4 mm MO1則無法抑制KLF8的轉譯作用,達到MO專一性的抑制結果。
Previously, we have isolated KLF8 cDNA from zebrafish and it encodes 348 amino acids that sharing high (63%) amino acid sequence similarity with human KLF8. Zebrafish KLF8 protein has three tandem Cys2His2 zinc-finger motifs at the carboxyl terminus. In addition, a repressor motif (PVALS/T) is located at the N-terminus of KLF8 protein. To explore the function of KLF8 on zebrafish development, we used KLF8 specific antisense morpholino oligomer to knock-down KLF8 expression and detected abnormal heart morphology and swollen pericardiac chamber in KLF8 morphant embryos. Therefore, the main goal of this thesis is to investigate function of KLF8 in zebrafish heart development. In different KLF8-MOs injected embryos, we found defects in midbrain/hindbrain boundary formation, reduction of midbrain ventricle in 24 hour post fertilization (hpf) morphant embryos. Heart tube was shorter in 28 hpf morphant as compared with wild type. Defect in heart looping was observed in 48 hpf morphant embryos, their atriums and ventricles remained in an anterior-posterior orientation, which containing different looping defects including D-looping with defect, No-looping and L-looping in 72 hpf morphant embryos. Higher percentage of heart looping defect, pericardia effusion and dropsy of ventral position were found when higher dose of KLF8-MOs were used for injection, and there is a dose-dependent manner. To further study these phenotypes, we probed these embryos with different marker genes for heart development. In KLF8-MO1 injected embryos, expression levels of amhc, cmlc2 and nkx2.5 in the heart were significantly increased in KLF8 morphants. From the expression pattern of these marker genes, we also found defective heart looping morphogenesis including D-looping with defect, No-looping, and L-looping in KLF8 morphants. Therefore, cardiac jogging and looping polarity were affected in KLF8-MO1 injected embryos. We also examined expression level of BMP2b, which is important for heart development and found its expression pattern was not altered in KLF8 90% epiboly morphants as compared with wild type. Since KLF8 is not expressed in the heart, previous results showing defects in L-R axis asymmetry of different digestive organs in KLF8 morphant embryos, and the information regarding influence of L-R axis asymmetry on mammalian heart development, we further analyzed effects on genes involved in left-right axis asymmetry in KLF8 morphant embryos. Expression levels of flh and ntl in the notochord, and expression level of gsc in the prechordal plate were not altered in KLF8 gastrula morphants as compared with wild type. Thus, axial midline structures develop normally in KLF8 MO1-injected embryos. Expression levels of cyc and oep in the prechordal plate were not altered in KLF8 gastrula morphants. Expression level of lefty 1 in the prechordal late was increased, while lefty2 expression was not changed in KLF8 gastrula morphants when compared with wild type. Expression levels of lefty1 and pitx2 in the left diencephalon and that of lefty2 in the heart were significantly decreased in KLF8 22s stage morphants. Overall, these experimental observations suggest that KLF8 may regulate heart jogging and looping processes by modulating expressions of members of Nodal signaling pathway. In order to demonstrate the specificity of KLF8–MOs, We raised an anti-KLF8 polyclonal antibody. Western blot analyses showed reduction in putative KLF8 protein levels when embryos that have been respectively injected with either KLF8-MO1 or KLF8-MO2, while KLF8 protein level was not altered in embryos injected with KLF8-4mm MO1. These results demonstrate the specificity of KLF8-MO1 and KLF8-MO2 used in this study.
目錄
頁次
誌謝……………………………………………………i
中文摘要………………………………………………ii
英文摘要………………………………………………v
目錄……………………………………………………viii
實驗方法目錄…………………………………………ix
表目錄…………………………………………………xi
圖目錄…………………………………………………xii
導論……………………………………………………1
實驗方法………………………………………………21
結果……………………………………………………47
討論……………………………………………………59
參考文獻………………………………………………70
圖表……………………………………………………83
附錄……………………………………………………106
吳偉銘. (2004). 斑馬魚KLF8在早期內胚層及消化道發育之功能性研究。國立台灣海洋大學生物科技研究所碩士論文。
Adachi, H., Saijoh, Y., Mochida, K., Ohishi, S., Hashiguchi, H., Hirao, A. and Hamada, H. (1999). Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev 13, 1589-1600.
Alliston, T., Ko, T. C., Cao, Y., Liang, Y. Y., Feng, X. H., Chang, C. and Derynck, R. (2005). Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. J Biol Chem 280, 24227-24237.
Armstrong, E. J. and Bischoff, J. (2004). Heart valve development: endothelial cell signaling and differentiation. Circ Res 95, 459-470.
Beis, D., Bartman, T., Jin, S. W., Scott, I. C., D'Amico, L. A., Ober, E. A., Verkade, H., Frantsve, J., Field, H. A., Wehman, A. et al. (2005). Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132, 4193-4204.
Bernanke, D. H. and Markwald, R. R. (1982). Migratory behavior of cardiac cushion tissue cells in a collagen-lattice culture system. Dev Biol 91, 235-245.
Bieker, J. J. (2001). Kruppel-like factors: three fingers in many pies. J Biol Chem 276, 34355-34358.
Bisgrove, B. W., Essner, J. J. and Yost, H. J. (1999). Regulation of midline development by antagonism of lefty and nodal signaling. Development 126, 3253-3262.
Bisgrove, B. W., Essner, J. J. and Yost, H. J. (2000). Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development 127, 3567-3579.
Bisgrove, B. W., Morelli, S. H. and Yost, H. J. (2003). Genetics of human laterality disorders: insights from vertebrate model systems. Annu Rev Genomics Hum Genet 4, 1-32.
Bisgrove, B. W., Snarr, B. S., Emrazian, A. and Yost, H. J. (2005). Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis. Dev Biol 287, 274-288.
Bodmer, R. (1993). The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118, 719-729.
Brand, T. (2003). Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258, 1-19.
Brennan, J., Norris, D. P. and Robertson, E. J. (2002). Nodal activity in the node governs left-right asymmetry. Genes Dev 16, 2339-2344.
Bruneau, B. G. (2002). Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res 90, 509-519.
Burdine, R. D. and Schier, A. F. (2000). Conserved and divergent mechanisms in left-right axis formation. Genes Dev 14, 763-776.
Capdevila, I. and Belmonte, J. C. (2000). Knowing left from right: the molecular basis of laterality defects. Mol Med Today 6, 112-118.
Capdevila, J., Vogan, K. J., Tabin, C. J. and Izpisua Belmonte, J. C. (2000). Mechanisms of left-right determination in vertebrates. Cell 101, 9-21.
Charron, F. and Nemer, M. (1999). GATA transcription factors and cardiac development. Semin Cell Dev Biol 10, 85-91.
Chen, J. N. and Fishman, M. C. (1996). Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122, 3809-3816.
Chen, J. N., van Eeden, F. J., Warren, K. S., Chin, A., Nusslein-Volhard, C., Haffter, P. and Fishman, M. C. (1997). Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373-4382.
Chi, X., Chatterjee, P. K., Wilson, W., 3rd, Zhang, S. X., Demayo, F. J. and Schwartz, R. J. (2005). Complex cardiac Nkx2-5 gene expression activated by noggin-sensitive enhancers followed by chamber-specific modules. Proc Natl Acad Sci U S A 102, 13490-13495.
Chin, A. J., Tsang, M. and Weinberg, E. S. (2000). Heart and gut chiralities are controlled independently from initial heart position in the developing zebrafish. Dev Biol 227, 403-421.
Collignon, J., Varlet, I. and Robertson, E. J. (1996). Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155-158.
Dang, D. T., Pevsner, J. and Yang, V. W. (2000). The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol 32, 1103-1121.
Danos, M. C. and Yost, H. J. (1995). Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus. Development 121, 1467-1474.
Danos, M. C. and Yost, H. J. (1996). Role of notochord in specification of cardiac left-right orientation in zebrafish and Xenopus. Dev Biol 177, 96-103.
DeRuiter, M. C., Poelmann, R. E., VanderPlas-de Vries, I., Mentink, M. M. and Gittenberger-de Groot, A. C. (1992). The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes? Anat Embryol (Berl) 185, 461-473.
Essner, J. J., Amack, J. D., Nyholm, M. K., Harris, E. B. and Yost, H. J. (2005). Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247-1260.
Essner, J. J., Branford, W. W., Zhang, J. and Yost, H. J. (2000). Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127, 1081-1093.
Franco, D. and Campione, M. (2003). The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med 13, 157-163.
Ghosh-Choudhury, N., Choudhury, G. G., Harris, M. A., Wozney, J., Mundy, G. R., Abboud, S. L. and Harris, S. E. (2001). Autoregulation of mouse BMP-2 gene transcription is directed by the proximal promoter element. Biochem Biophys Res Commun 286, 101-108.
Hamada, H., Meno, C., Watanabe, D. and Saijoh, Y. (2002). Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3, 103-113.
Harvey, R. P. (2002). Patterning the vertebrate heart. Nat Rev Genet 3, 544-556.
Holtzinger, A. and Evans, T. (2005). Gata4 regulates the formation of multiple organs. Development 132, 4005-4014.
Horne-Badovinac, S., Rebagliati, M. and Stainier, D. Y. (2003). A cellular framework for gut-looping morphogenesis in zebrafish. Science 302, 662-665.
Kaczynski, J., Cook, T. and Urrutia, R. (2003). Sp1- and Kruppel-like transcription factors. Genome Biol 4, 206.1-206.8
Kawahara, A. and Dawid, I. B. (2001). Critical role of biklf in erythroid cell differentiation in zebrafish. Curr Biol 11, 1353-1357.
Kosaki, K. and Casey, B. (1998). Genetics of human left-right axis malformations. Semin Cell Dev Biol 9, 89-99.
Lee, R. K., Stainier, D. Y., Weinstein, B. M. and Fishman, M. C. (1994). Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 120, 3361-3366.
Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. and Tabin, C. (1995). A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803-814.
Levin, M., Pagan, S., Roberts, D. J., Cooke, J., Kuehn, M. R. and Tabin, C. J. (1997). Left/right patterning signals and the independent regulation of different aspects of situs in the chick embryo. Dev Biol 189, 57-67.
Licht, J. D., Grossel, M. J., Figge, J. and Hansen, U. M. (1990). Drosophila Kruppel protein is a transcriptional repressor. Nature 346, 76-79.
Lin, C. R., Kioussi, C., O'Connell, S., Briata, P., Szeto, D., Liu, F., Izpisua-Belmonte, J. C. and Rosenfeld, M. G. (1999). Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401, 279-282.
Lohr, J. L. and Yost, H. J. (2000). Vertebrate model systems in the study of early heart development: Xenopus and zebrafish. Am J Med Genet 97, 248-257.
Long, S., Ahmad, N. and Rebagliati, M. (2003). The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130, 2303-2316.
Lowe, L. A., Supp, D. M., Sampath, K., Yokoyama, T., Wright, C. V., Potter, S. S., Overbeek, P. and Kuehn, M. R. (1996). Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158-161.
Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. and Goldstein, L. S. (1999). Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci U S A 96, 5043-5048.
Meno, C., Gritsman, K., Ohishi, S., Ohfuji, Y., Heckscher, E., Mochida, K., Shimono, A., Kondoh, H., Talbot, W. S., Robertson, E. J. et al. (1999). Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4, 287-298.
Meno, C., Ito, Y., Saijoh, Y., Matsuda, Y., Tashiro, K., Kuhara, S. and Hamada, H. (1997). Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2, 513-524.
Meno, C., Saijoh, Y., Fujii, H., Ikeda, M., Yokoyama, T., Yokoyama, M., Toyoda, Y. and Hamada, H. (1996). Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 381, 151-155.
Meno, C., Shimono, A., Saijoh, Y., Yashiro, K., Mochida, K., Ohishi, S., Noji, S., Kondoh, H. and Hamada, H. (1998). lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94, 287-297.
Mercola, M. (1999). Embryological basis for cardiac left-right asymmetry. Semin Cell Dev Biol 10, 109-116.
Metz, A., Knochel, S., Buchler, P., Koster, M. and Knochel, W. (1998). Structural and functional analysis of the BMP-4 promoter in early embryos of Xenopus laevis. Mech Dev 74, 29-39.
Molloy, D. P., Milner, A. E., Yakub, I. K., Chinnadurai, G., Gallimore, P. H. and Grand, R. J. (1998). Structural determinants present in the C-terminal binding protein binding site of adenovirus early region 1A proteins. J Biol Chem 273, 20867-20876.
Nonaka, S., Shiratori, H., Saijoh, Y. and Hamada, H. (2002). Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96-99.
Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M. and Hirokawa, N. (1998). Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829-837.
Norris, D. P. and Robertson, E. J. (1999). Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev 13, 1575-1588.
Oates, A. C., Pratt, S. J., Vail, B., Yan, Y., Ho, R. K., Johnson, S. L., Postlethwait, J. H. and Zon, L. I. (2001). The zebrafish klf gene family. Blood 98, 1792-1801.
Ohte, N., Cheng, C. P., Suzuki, M. and Little, W. C. (1997). The cardiac effects of pimobendan (but not amrinone) are preserved at rest and during exercise in conscious dogs with pacing-induced heart failure. J Pharmacol Exp Ther 282, 23-31.
Pagan-Westphal, S. M. and Tabin, C. J. (1998). The transfer of left-right positional information during chick embryogenesis. Cell 93, 25-35.
Peeters, H. and Devriendt, K. (2006). Human laterality disorders. Eur J Med Genet.1-14
Peterkin, T., Gibson, A., Loose, M. and Patient, R. (2005). The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin Cell Dev Biol 16, 83-94.
Ramsdell, A. F. (2005). Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol 288, 1-20.
Raya, A. and Belmonte, J. C. (2006). Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat Rev Genet 7, 283-293.
Rebagliati, M. R., Toyama, R., Haffter, P. and Dawid, I. B. (1998). cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci U S A 95, 9932-9937.
Reiter, J. F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N. and Stainier, D. Y. (1999). Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13, 2983-2995.
Reiter, J. F., Kikuchi, Y. and Stainier, D. Y. (2001a). Multiple roles for Gata5 in zebrafish endoderm formation. Development 128, 125-135.
Reiter, J. F., Verkade, H. and Stainier, D. Y. (2001b). Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5. Dev Biol 234, 330-338.
Schilling, T. F., Concordet, J. P. and Ingham, P. W. (1999). Regulation of left-right asymmetries in the zebrafish by Shh and BMP4. Dev Biol 210, 277-287.
Schuh, R., Aicher, W., Gaul, U., Cote, S., Preiss, A., Maier, D., Seifert, E., Nauber, U., Schroder, C., Kemler, R. et al. (1986). A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell 47, 1025-1032.
Small, E. M. and Krieg, P. A. (2004). Molecular regulation of cardiac chamber-specific gene expression. Trends Cardiovasc Med 14, 13-8.
Srivastava, D. and Olson, E. N. (2000). A genetic blueprint for cardiac development. Nature 407, 221-226.
Stainier, D. Y. (2001). Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2, 39-48.
Stainier, D. Y. and Fishman, M. C. (1992). Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol 153, 91-101.
Stainier, D. Y., Fouquet, B., Chen, J. N., Warren, K. S., Weinstein, B. M., Meiler, S. E., Mohideen, M. A., Neuhauss, S. C., Solnica-Krezel, L., Schier, A. F. et al. (1996). Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285-292.
Stainier, D. Y., Lee, R. K. and Fishman, M. C. (1993). Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119, 31-40.
Stancheva, I., Collins, A. L., Van den Veyver, I. B., Zoghbi, H. and Meehan, R. R. (2003). A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. Mol Cell 12, 425-435.
Stanojevic, D., Hoey, T. and Levine, M. (1989). Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Kruppel in Drosophila. Nature 341, 331-335.
Supp, D. M., Brueckner, M., Kuehn, M. R., Witte, D. P., Lowe, L. A., McGrath, J., Corrales, J. and Potter, S. S. (1999). Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. Development 126, 5495-5504.
Supp, D. M., Witte, D. P., Potter, S. S. and Brueckner, M. (1997). Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 389, 963-966.
Takeda, S., Yonekawa, Y., Tanaka, Y., Okada, Y., Nonaka, S. and Hirokawa, N. (1999). Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol 145, 825-836.
Thisse, C., Thisse, B., Halpern, M. E. and Postlethwait, J. H. (1994). Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev Biol 164, 420-429.
Turner, J. and Crossley, M. (1999). Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem Sci 24, 236-240.
van Vliet, J., Turner, J. and Crossley, M. (2000). Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28, 1955-1962.
Viragh, S., Szabo, E. and Challice, C. E. (1989). Formation of the primitive myo- and endocardial tubes in the chicken embryo. J Mol Cell Cardiol 21, 123-137.
Wang, Y. X., Qian, L. X., Yu, Z., Jiang, Q., Dong, Y. X., Liu, X. F., Yang, X. Y., Zhong, T. P. and Song, H. Y. (2005). Requirements of myocyte-specific enhancer factor 2A in zebrafish cardiac contractility. FEBS Lett 579, 4843-4850.
Wei, H., Wang, X., Gan, B., Urvalek, A. M., Melkoumian, Z. K., Guan, J. L. and Zhao, J. (2006). Sumoylation delimits KLF8 transcriptional activity associated with the cell cycle regulation. J Biol Chem 281, 16664-16671.
Westerfield. (2000). The Zebrafish Book : A Guide the Laboratory use of zebrafish (Danio rerio), third ed. The univerersity of Oregon press, Eugene, OR.
Yelon, D. (2001). Cardiac patterning and morphogenesis in zebrafish. Dev Dyn 222, 552-563.
Zaffran, S. and Frasch, M. (2002). Early signals in cardiac development. Circ Res 91, 457-469.
Zhang, J., Talbot, W. S. and Schier, A. F. (1998). Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241-251.
Zhao, J., Bian, Z. C., Yee, K., Chen, B. P., Chien, S. and Guan, J. L. (2003). Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol Cell 11, 1503-1515.
Zhao, R., Watt, A. J., Li, J., Luebke-Wheeler, J., Morrisey, E. E. and Duncan, S. A. (2005a). GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol 25, 2622-2631.
Zhao, Y., Samal, E. and Srivastava, D. (2005b). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214-220.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top