跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴嘉瑋
研究生(外文):Jia-Wei Dai
論文名稱:一級胺標定法進行磷酸化的相對與絕對定量
論文名稱(外文):Quantitation of Relative and Absolute Phosphorylation Stoichiometry Using Primary Amine Isotopic Labeling
指導教授:許濤許濤引用關係陳玉如陳玉如引用關係
指導教授(外文):Todd HsuYu-Ju Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:145
中文關鍵詞:磷酸化蛋白質定量蛋白質體質譜
外文關鍵詞:protein phosphorylationquantitationproteomeMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質磷酸化在細胞訊息傳遞及功能調控上扮演重要關鍵角色。細胞再生物體中的增殖(proliferation)、分化(differentiation)或受到環境影響而產生的變化。為了更進一步了解生物體的話,發展磷酸化蛋白質的定性及定量的分析方法是必要的。在人類疾病中如帕金森氏症,也發現蛋白質磷酸化異常現象。
在此論文中,我們發展一套新的定量方法可同時分析磷酸化蛋白質相對量與絕對磷酸化程度。我們先將樣品經過酵素消化後利用金屬親合層析結合質譜技術進行磷酸化胜肽的鑑定。之後,將樣品分成兩個不同狀態(控制組及實驗組),實驗組的磷酸化胜肽的Serine、Threonine以及 Tyrosine 胺基酸上做去磷酸化反應,利用氫氟酸將磷酸根從 Serine、Threonine以及 Tyrosine上移除。接著,在兩種不同狀態的胜肽分別接上isotope tag for relative and absolute quantification (iTRAQ)試劑。將兩樣品混合利用LC-MS/MS分析,我們在跟鑑定到的磷酸化胜肽資料庫比對,找出去磷酸化的胜肽利用iTRAQ進行定量分析。而磷酸化程度的計算,是計算同位素標定後的去磷酸化胜肽以及蛋白質變化量是計算相同蛋白質中非磷酸化胜肽的離子強度得到。
實驗結果得到在Jurkat T-cell細胞質中鑑定1435個磷酸化蛋白質中及3862個磷酸化胜肽且鑑定到15個磷酸化蛋白質的磷酸化程度,也在H460 cell中鑑定到10個磷酸化蛋白質的磷酸化程度。這結果證實此技術不止可鑑定出磷酸化的胜肽,更重要的是,可定量分析少量磷酸化胜肽的磷酸化程度,且這方法可同時針對蛋白質做定量分析,將來能廣泛應用在蛋白質體學中磷酸化蛋白質的大規模鑑定和定量分析。
Cellular processes such as proliferation, differentiation, and adaptation to environmental changes are regulated by protein phosphorylation. Qualitative and quantitative analysis of protein phosphorylation is important to elucidate the “molecular switch” in cellular processes. Increasing numbers of human diseases such as neurodegenerative diseases were discovered to involve mutations, overexpression, or malfunction of protein kinases and phosphatases as well as their regulators and effectors.
In this study, we developed a new quantitation strategy to determine the relative change and the absolute degree of protein phosphorylation. Here, we established a phosphoprotein database of Jurkat T-cell by utilizing immobilized affinity chromatography (IMAC) in combination with LC-MS/MS analysis. For quantitation analysis, the proof-of-concept experiment was performed on digested β-casein peptides mixtures with various protein concentrations and various degree of phosphorylation. One half of β-casein digested mixtures in which the phosphate group of phosphoseryl, phosphothreonyl and phosphotyrosyl residues was removed by HF treatment. HF treatment peptides and the other half of peptides were labeled with isotope tag relative and absolute quantification (iTRAQ) reagent, respectively. After iTRAQ labeling, those peptides mixtures were combined for analyzed by LC-MS/MS. The change in protein phosphorylation degree can be detected through the change in the intensity of dephosphopeptide and the change in protein level can be measured by in the intensity of non-phosphopeptide from the same protein.
In this study, the preliminary result identified 1435 phosphoproteins with 3862 phosphopeptides, about 55.6% of the identified peptides from Jurkat T-cell were found to be phosphorylated. We identified 12 phosphoproteins phosphorylation degree from Jurkat T-cell, and 10 phosphoproteins phosphorylation degree from H460 cell. The results illustrated capability of the IMAC-iTRAQ strategy to not only identify the phosphorylated site, but also more importantly to permit the quantitation for phosphorylation degree of low abundance phosphopeptides. This method is also capable of protein quantitation on a global basis. Overall, the results exemplify the application of the IMAC-iTRAQ strategy approach and demonstrate its potential utility for proteome-wide site-specific phosphoprotein identification and quantitation.
謝誌......................................................Ⅱ
中文摘要..................................................Ⅲ
ABSTRACT..................................................Ⅴ
CONTENTS..................................................Ⅶ
LIST OF FIGURES...........................................Ⅸ
LIST OF TABLES..........................................ⅩⅠ
ABBERVIATIONS...........................................ⅩⅡ
CHAPTER 1 INTRODUCTION.....................................1
1-1 Phosphoproteomics...................................1
1-1.1 Post Translational Modification...................1
1-1.2 Significance of Protein Phosphorylation...........2
1-1.3 Complexity and Analytical Challenges of Protein Phosphorylation ........................................3
1-2 Analysis of Protein Phosphorylation.................4
1-2.1 Qualitative Analysis of Protein Phosphorylation...4
1-2.1.1 Determination of Protein Phosphorylation Site by
Classical Methods................................4
1-2.1.2 Determination of Protein Phosphorylation by Mass Spectrometry...............................................5
1-2.2 Mass Spectrometry-Based Strategies for Quantitative Analysis of Protein Phosphorylation...........9
1-2.2.1 Tradiational Quantitation of Protein Phosphorylation............................................9
1-2.2.2 Absoulte Quantitation of Protein Phosphorylation...........................................11
1-2.3 Purpose of this Study............................12
CHAPTER 2 EXPERIMENTAL METHODS............................14
2-1 Materials..........................................14
2-2 Instrumentation....................................16
2-2.1 High-Performance Liquid Chromatography...........16
2-2.2 MALDI-TOF MS (Voyager)...........................17
2-2.3 Hybrid Quadrupole TOF (QSTAR)....................18
2-3 Preparation of Jurkat T Cell.......................19
2-3.1 Cell Culture and Preparation.....................19
2-3.2 Subcellular Fractionation........................20
2-4 Protein Quantitation...............................21
2-4.1 BCATM Protein Assay Kit..........................21
2-4.2 Coomassie (Bradford) Protein Assay Kit...........22
2-4.3 SDS-PAGE.........................................22
2-4.4 In-Gel Digestion.................................23
2-5 Desalting and Concentration........................24
2-5.1 Zip-Tip..........................................24
2-5.2 Macro-trap.......................................24
2-6 Peptides Dephosphorylation.........................25
2-7 iTRAQ Labeling Reaction............................25
2-8 Immobilized Metal Affinity Chromatography..........26
2-8.1 Preparation of IMAC Column.......................26
2-8.2 IMAC Purification of Phosphopeptides.............26
2-9 Strong Cation Exchange Column (SCX)................27
2-10 Capillary LC-MS Analysis and Data Analysis........29
2-10.1 Capillary LC-MS Analysis........................29
2-10.2 Protein Identification..........................29
CHAPTER 3 RESULTS.........................................30
3-1 The Overview of iTRAQ-IMAC Strategy................30
3-2 Optimization for the De-phosphorylation of Phosphopeptides...........................................31
3-2.1 Dephosphorylation Efficiency.....................31
3-2.2 Sample Recovery after HF Treatment...............32
3-3 Performance of iTRAQ-IMAC Strategy.................34
3-4 Quantitation for the Level of Phosphorylation with Different Protein Concentrations..........................35
3-5 Analysis of Protein Phosphorylation Degree from Jurkat T Cell.............................................38
3-5.1 Overview for the Analysis of Complex Protein Mixture from Cell Lysate..................................38
3-5.2 Profiling of Protein Phosphorylation Using IMAC-LS-MS........................................................40
3-5.3 Quantification of phosphorylation degree.........41
CHAPTER 4 Discussion......................................43
CHAPTER 5 COCLUSION AND PROSPECTS.........................47
1. Yang, X. J., Multisite protein modi. cation and intramolecular signaling. Oncogene 2005, 24, (10), 1653-1662.
2. Jensen, O. N., Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology 2004, 8, (1), 33-41.
3. Johnson, L. N.; Lewis, R. J., Structural basis for control by phosphorylation. Chemical Reviews 2001, 101, (8), 2209-2242.
4. Blume-Jensen, P.; Hunter, T., Oncogenic kinase signalling. Nature 2001, 411, (6835), 355-365.
5. Lau LF, S. J., Seymour PA, Sanner MA., Tau protein phosphorylation as a therapeutic target in Alzheimer's disease. Curr Top Med Chem. 2002, 4, 395-415.
6. Mann, M.; Ong, S. E.; Gronborg, M.; Steen, H.; Jensen, O. N.; Pandey, A., Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology 2002, 20, (6), 261-268.
7. Zeller, M.; Konig, S., The impact of chromatography and mass spectrometry on the analysis of protein phosphorylation sites (vol 378, pg 898, 2004). Analytical and Bioanalytical Chemistry 2004, 379, (2), 318-318.
8. Ohira, T.; Zhan, Q.; Ge, Q.; VanDyke, T.; Badwey, J. A., Protein phosphorylation in neutrophils monitored with phosphospecific antibodies. J Immunol Methods 2003, 281, (1-2), 79-94.
9. Boyle, W. J.; van der Geer, P.; Hunter, T., Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol 1991, 201, 110-49.
10. Ibarrola, N.; Kalume, D. E.; Gronborg, M.; Iwahori, A.; Pandey, A., A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal Chem 2003, 75, (22), 6043-9.
11. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, (4926), 64-71.
12. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988, 60, (20), 2299-301.
13. Steen, H.; Kuster, B.; Mann, M., Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. Journal of Mass Spectrometry 2001, 36, (7), 782-790.
14. Steen, H.; Kuster, B.; Fernandez, M.; Pandey, A.; Mann, M., Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Analytical Chemistry 2001, 73, (7), 1440-1448.
15. Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A., An introduction to quadrupole-time-of-flight mass spectrometry. Journal of Mass Spectrometry 2001, 36, (8), 849-865.
16. al, T. C. e., LC/MS and LC/MS/MS screening for the sites of posttranslational modification in proteins. Methods in Protein Sequence Analysis 1991, 249-256.
17. al, M. J. H. e., Selective detection of phosphopeptides in complex mixtures by electrospray liquid chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom 1993, 4, 710-717.
18. Schlosser, A.; Pipkorn, R.; Bossemeyer, D.; Lehmann, W. D., Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem 2001, 73, (2), 170-6.
19. Gronborg, M.; Kristiansen, T. Z.; Stensballe, A.; Andersen, J. S.; Ohara, O.; Mann, M.; Jensen, O. N.; Pandey, A., A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics 2002, 1, (7), 517-27.
20. A. Pandey, A. V. P., B. Blagoev, X.R. Bustelo, M. Mann and H.F. Lodish Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. USA 2000, 97, 179-184.
21. Yeung, Y. G.; Wang, Y.; Einstein, D. B.; Lee, P. S.; Stanley, E. R., Colony-stimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages. J Biol Chem 1998, 273, (27), 17128-37.
22. M. Gronborg, T. Z. K., A. Stensballe, J.S. Andersen, O. Ohara, M. Mann, O.N. Jensen and A. Pandey, A Mass Spectrometry-based Proteomic Approach for Identification of Serine/Threonine-phosphorylated Proteins by Enrichment with Phospho-specific Antibodies Molecular & Cellular Proteomics 2002, 1, 517-527.
23. S. Kane, H. S., S.C. Liu, J.M. Asara, W.S. Lane, C.C. Garner and G.E. Lienhard A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem. 2002, 277, 22115–22118.
24. Gaberc-Porekar, V.; Menart, V., Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 2001, 49, (1-3), 335-60.
25. Stults, P. C. a. J. T., Mapping the phosphorylation sites of proteins using on-line immobilized metal affinity chromatography/capillary electrophoresis/electrospray ionization multiple stage tandem mass spectrometry. Rapid Commun. Mass Spectrom 2000, 14, 1600-1606.
26. Stensballe, A.; Andersen, S.; Jensen, O. N., Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 2001, 1, (2), 207-22.
27. Raska, C. S.; Parker, C. E.; Dominski, Z.; Marzluff, W. F.; Glish, G. L.; Pope, R. M.; Borchers, C. H., Direct MALDI-MS/MS of phosphopeptides affinity-bound to immobilized metal ion affinity chromatography beads. Anal Chem 2002, 74, (14), 3429-33.
28. Y. Oda, T. N. a. B. T. C., Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol 2001, 19, 379-382.
29. Zhou, H.; Watts, J. D.; Aebersold, R., A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 2001, 19, (4), 375-8.
30. Yates, J. R., 3rd, Mass spectrometry and the age of the proteome. J Mass Spectrom 1998, 33, (1), 1-19.
31. Naaby-Hansen, S.; Waterfield, M. D.; Cramer, R., Proteomics--post-genomic cartography to understand gene function. Trends Pharmacol Sci 2001, 22, (7), 376-84.
32. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics 2002, 1, (5), 376-386.
33. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology 1999, 17, (10), 994-999.
34. M. Schnolzer, P. J. a. W. D. L., Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 1996 17, 945–953.
35. Kirkpatrick, D. S.; Gerber, S. A.; Gygi, S. P., The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 2005, 35, (3), 265-73.
36. Gerber, S. A.; Rush, J.; Stemman, O.; Kirschner, M. W.; Gygi, S. P., Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (12), 6940-6945.
37. Zhang, X. L.; Jin, Q. K.; Carr, S. A.; Annan, R. S., N-Terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Communications in Mass Spectrometry 2002, 16, (24), 2325-2332.
38. Stasyk, T.; Huber, L. A., Zooming in: Fractionation strategies in proteomics. Proteomics 2004, 4, (12), 3704-3716.
39. Yan, J. X.; Packer, N. H.; Gooley, A. A.; Williams, K. L., Protein phosphorylation: technologies for the identification of phosphoamino acids. Journal of Chromatography A 1998, 808, (1-2), 23-41.
40. McLachlin, D. T.; Chait, B. T., Analysis of phosphorylated proteins and peptides by mass spectrometry. Current Opinion in Chemical Biology 2001, 5, (5), 591-602.
41. Annan, R. S.; Huddleston, M. J.; Verma, R.; Deshaies, R. J.; Carr, S. A., A multidimensional electrospray MS-based approach to phosphopeptide mapping. Analytical Chemistry 2001, 73, (3), 393-404.
42. Andersson, L.; Porath, J., Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 1986, 154, (1), 250-4.
43. Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002, 20, (3), 301-5.
44. Goshe, M. B.; Conrads, T. P.; Panisko, E. A.; Angell, N. H.; Veenstra, T. D.; Smith, R. D., Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal Chem 2001, 73, (11), 2578-86.
45. Oda, Y.; Nagasu, T.; Chait, B. T., Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnology 2001, 19, (4), 379-382.
46. Li, W.; Boykins, R. A.; Backlund, P. S.; Wang, G. Y.; Chen, H. C., Identification of phosphoserine and phosphothreonine as cysteic acid and beta-methylcysteic acid residues in peptides by tandem mass spectrometric sequencing. Analytical Chemistry 2002, 74, (22), 5701-5710.
47. McLachlin, D. T.; Chait, B. T., Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. Analytical Chemistry 2003, 75, (24), 6826-6836.
48. Knight, Z. A.; Schilling, B.; Row, R. H.; Kenski, D. M.; Gibson, B. W.; Shokat, K. M., Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat Biotechnol 2003, 21, (9), 1047-54.
49. Chelius, D.; Zhang, T.; Wang, G. H.; Shen, R. F., Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Analytical Chemistry 2003, 75, (23), 6658-6665.
50. Andersen, J. S.; Wilkinson, C. J.; Mayor, T.; Mortensen, P.; Nigg, E. A.; Mann, M., Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003, 426, (6966), 570-574.
51. Cutillas, P. R.; Chalkley, R. J.; Hansen, K. C.; Cramer, R.; Norden, A. G. W.; Waterfield, M. D.; Burlingame, A. L.; Unwin, R. J., The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. American Journal of Physiology-Renal Physiology 2004, 287, (3), F353-F364.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top