跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王子豹
研究生(外文):Tzu-Pao Wang
論文名稱:不同電壓之加速氯離子傳輸試驗中比色法之影響
論文名稱(外文):The Influence on Different Voltages of Accelerated Chloride Migration Test by Using Colorimetric Method
指導教授:楊仲家
指導教授(外文):Chung-Chia Yang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:102
中文關鍵詞:加速氯離子傳輸試驗比色法氯離子傳輸係數
外文關鍵詞:Accelerated chloride migration testColorimetric methodChloride migration coefficient
相關次數:
  • 被引用被引用:2
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究利用加速氯離子傳輸試驗 (Accelerated Chloride Migration
Test),探討不同電壓(24V、30V、48V),水膠比(0.35、0.45、0.55、0.65),齡期(28天、91天)及普通波特蘭水泥與添加飛灰20%、爐石40%、爐灰30%取代水泥量之混凝土對累積電量之影響,並依據比色法(Colorimetric Method)量測氯離子於混凝土試片之平均穿透深度及計算非穩態傳輸係數,最後利用統計中隨機誤差之特性,進行或然率之應用。
試驗結果顯示,以齡期而言,91天齡期遠比28天齡期之非穩態傳輸係數低;以控制組 (C組) 及對照組 (F組、S組、SF組) 而論,氯離子之非穩態傳輸係數為C組>S組>SF組>F組。
在ACMT試驗及比色法中,發現48V電壓及齡期28天之試片在相同通電時間,當電壓較高,能量也較高,電流經過試片會因為混凝土的高電阻性而產生熱能,離子的遷移速率隨溫度的提高而增快,因此當電壓較高時,導致許多試片均完全穿透,因此無法進行評估,且28天齡期之試片水化尚未完全,因此孔隙結構較鬆散,且施加較高電壓容易造成氯離子快速通過,可能造成混凝土微結構之破壞,故不考慮此項資料,進而分析另外五種情形。若考慮單一觀測量時,單位面積之總累積電量Q/A與氯離子平均穿透深度Xd之標準偏差關係圖達到管制曲線之要求。

關鍵字:加速氯離子傳輸試驗、比色法、氯離子傳輸係數
Abstract

The accelerated chloride migration test was used to investigate the different voltages (24V, 30V, and 48V), different w/b ratios (0.35, 0.45, 0.55, and 0.65) ,different ages (28days, 91days) and the ordinary Portland cement concrete and concrete containing different type of mineral admixtures (fly ash, slag and ash with slag replacement for 20%, 40% and 30% weight of the total cementitious content) effect of the total charge passeds in concrete. The colorimetric method test was used to measure the chloride ion penetration depth in specimen of concrete and calculate chloride ion non-steady-state migration coefficient. Than finally to proceeding the usage of probability by taking advantage of the character of random inaccuracy in statistics.
Speaking about age, the migration coefficient of the chloride ion non-steady-state resulted from 91 days was more lower than 28 days; comparing the controlled set (C set) with contrastive set (F set, S set, SF set), the migration coefficient of the chloride ion non-steady-state is C set > S set > SF set > F set.
In process of ACMT and colorimetric method, we can find out that when specimen in a state of 48V with age 28 days, its energy will be more higher resulted from more higher voltage during the same electricized time. The electric current will generate heat resulted from high resistance of concrete when it penetrates specimen, the moving ratio of chloride will be faster resulted from increased temperature. Hence when voltage is more higher, it will resulted in entire penetration through concrete specimen by much of specimen that will cause us enable to evaluate. Moreover the waterization of age 28days’ specimen not yet completed that resulted in incompact construction of vesicle, and it will
cause chloride to pass quickly if increase the voltage that will probably

cause ruin of concrete construction. So not to take this kind of data on carrying out analysis for other 5 items. If just in consideration of single observely, the graph of standard related deviation that the total charge passeds of unit area and the chloride average penetration depth will achieve requests from the control curve.

Keywords: Accelerated chloride migration test, Colorimetric method, Chloride migration coefficient
目錄
中文摘要 i
英文摘要 ii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
1-3 研究流程 3
第二章 文獻回顧 4
2-1 量測混凝土耐久性之方法 4
2-2 快速氯離子滲透試驗 5
2-3 加速氯離子試驗 7
2-4 比色法試驗 9
2-5 孔隙結構 10
2-6 離子在混凝土中之傳輸之方法 11
2-7 添加礦物摻料對抵抗氯離子侵入的影響 12
2-8 礦物摻料之特性 13
2-8-1 爐石 13
2-8-2 爐石之卜作嵐反應 14
2-8-3 飛灰 15
2-8-4 飛灰之卜作嵐反應 16
2-9 孔隙溶液的影響 17
第三章 試驗計劃 18
3-1 試驗變數 18
3-2 試驗材料性質 19
3-2-1 粒料 19
3-2-2 水泥 21
3-2-3 飛灰 21
3-2-4 爐石 21
3-2-5 強塑劑 21
3-3 試驗之配比設計 21
3-4 試體編碼 23
3-5 試驗方法及儀器設備 24
3-5-1 試驗前置處理 24
3-5-2 加速氯離子傳輸試驗 27
3-5-3 比色法試驗 29
3-5-4 力學性質試驗 30
第四章 結果與討論 31
4-1 抗壓強度 31
4-2 電壓加速氯離子傳輸中之溫度效應 33
4-3 ACMT試驗之累積電量 38
4-3-1 電流與累積電量 38
4-3-2 水膠比對總累積電量之影響 52
4-4 比色法之平均穿透深度及非穩態傳輸係數 59
4-4-1 比色法之平均穿透深度與水膠比之關係 70
4-4-2 電壓對非穩態傳輸係數之影響 75
4-5 總累積電量與平均穿透深度之關係 85
4-5-1 養護齡期與電壓之影響 85
4-5-2 隨機誤差之特性 91
第五章 結論與建議 97
5-1 結論 97
5-2 建議 98
參考文獻 99
參考文獻
1. M. S. Gani, ”Cement and Concrete”, Chapman & Hall, Fist edition, p.p.159~164, 1997.
2. ASTM C1202-97, ”Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration ”, 1997.
3. R. Feldman, L. R. Prudencio Jr. , and G. Chan,“Rapid chloride permeability test on blended cement and other concrete: correlations between charge, initial current and conductivity”, Cons. Build. Mat. 13 p.p149-154, 1999.
4. C. Andrade, ”Calculation of chloride diffusion coefficient in concrete from ionic migration measurement”, Cem. Concr. Res. 23 (1993)
724-742.
5. D. Whiting, “Rapid measurement of the chloride permeability of concrete”, Public Roads. 45 p.p.101-112, 1981.
6. T. H. Wee, A. K. Suryavanshi, and S. S. Tin, “Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability”, Cem. Concr. Comp. 21. (1999) 59-72.
7. T. H. Wee, A. K. Suryavanshi, and S. S. Tin, “Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixture”, ACI Mater. J. 97 p.p.221-232, 2000.
8. AASHTO T259-80, “Resistance of Concrete to Chloride Ion Pentration, Standard specification for transportation materials and methods of sampling and testing” ,1980.
9. M. H. Zhang, and O. E. Gjψrv, “Permeability of high–strength lightweight concrete”, ACI Mater. J.88 p.p.463-469, 1991.
10. R. D. Hooton, “What is need in a permeability test for evalution of concrete quality, pore structure and permeability of cementitious materials”, Materials Research Society Symposium Proceedings. 137 p.p.1459-1475, 1987.
11. C. C. Yang, S.W Cho, R. Huang, “The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test” Cem. Concr. Res. 32. (2002) 217-222.
12. 張峻傑,”以加速氯離子穿透試驗評估混凝土耐久性之研究” ,國立
台灣海洋大學材料工程研究所碩士論文, pp.54-73, 2003.
13. W. Prince, R. Perami, M. Espagne, “Mechanisms involved in the accelerated test of chloride permeability”, Cem. Concr. Res. 29. (1999) 687-694.
14. C. Andrade,” Relation between colourimetric chloride penetration depth and charge passed migration tests of the type of standard ASTM C1202-91”, Cem. Concr. Res. 29. (1999) 417-421.
15. N. Otsuki,’’Evaluation of AgNO3 Solution Spray Method for Measurement of Chloride Penetration into Hardened Cementitious Matrix Materials’’ACI Mater. J. 11-12, p.p.587-592,1992.
16. L.Tang , “Electrically accelerated methods for determining chloride diffusivity in concrete – current development”,Mag.Concr. Res. 176. 9, p.p.173-179, 1996.
17. NT BUILD 492, ”Concrete, Motar and Cement-based repair materials:Chloride migration coefficient from non-steady-state migration experiments”, 1999.
18. 黃兆龍,“混凝土性質與行為”, 詹氏書局, pp.106-113, 2002.
19. P. K. Metha,”Concrete: Structure, Properties and Materials” Prentice-Hall, Ine, New Jersey, USA. 1986.
20. A. M. Brandt,“Cement-based Composites: Materials, Mechanical Properties and Performance”, E & Fnspon, pp.116-118, 1995.
21. 王茂齡, ”輸送現象”, 高立圖書有限公司, pp. 629-670, 2000.
22. S. Mindess, J. F. Young, ”concrete”, Prentice-Hall, Engle Wood Cliff,
N.J. , 1981.
23. R. J. Flatt, ”Dispersion force in cement suspension”, Cem. Concr. Res. (2004) 399-408.
24. J. Bai, S. Wild, B. B. Sabir, ”Chloride ingress and strength loss in
concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater”, Cem. Concr. Res. 33 (2003) 353-362.
25. 黃兆龍,“混凝土性質與行為”, 詹氏書局, pp.210-221, 2002.
26. 陳清泉, 陳振川,“爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究”, 台灣營建研究中心, pp.5-31, 1987.
27. 詹穎雯,“高爐水泥混凝土之特性”, 台灣營建研院, pp.13-28,
2000.
28. 張峻傑,”以加速氯離子穿透試驗評估混凝土耐久性之研究” , 國立台灣海洋大學材料工程研究所碩士論文, pp.14-15,2003.
29. ASTM C618-99,“Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete”, 1999.
30. 行政院公共工程委員會,“公共工程飛灰混凝土使用手冊”, 第二章, pp.5-16, 1999.
31. A. K. Suryavanshi, J. D. Scantlebury, S. B. Lyon,“Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate”,
Cem. Concr. Res. 26 (1996) 717-727.
32. Y. M. Zhang, W. Y. Sun, and D. Han,“Hydration of high-volume fly ash cement pastes”, Cem. Concr. Compos. 22 (2000) 445-452.
33. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties,
and Materials”, Prentice Hall, pp. 281-282 ,1993.
34. M. D.A. Thomas, and P. B. Bamforth, “Modelling chloride diffusion
in concrete effect of fly ash and slag”, Cem. Concr. Res. 29 (1999) 487-495.
35. W. Prince, R. Gagne,“The effects of type of solutions used in accelerate chloride migration tests for concrete”, Cem. Concr. Res. 31 (2001) 775-780.
36. 李旺達,”探討比色法中顏色變化界面之氯離子濃度對混凝土非
穩態氯離子傳輸係數之影響”,國立台灣海洋大學材料工程研究
所碩士論文, pp25-71, 2006.
37. ASTM 39-99, “Standard Test Method for Compressive Strength of
Cylindrical Concrete Specimens”, 1999.
38. 洪澄洋,“數理統計學導引”, 五南圖書出版公司, pp.489~479, 1979.
39. 張惠英, 刑秋順 譯, “土木工程實用概率和統計”, 同濟大學出版社, pp.195~198, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top