跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 15:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳文貴
研究生(外文):wun-guei wu
論文名稱:混凝土加速氯離子傳輸試驗中非穩態與穩態傳輸性質之關係
論文名稱(外文):Relation Between Non-steady-state and Steady-state Transport Properties of Concrete from ACMT
指導教授:楊仲家
指導教授(外文):Chung-Chia Yang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:加速氯離子傳輸試驗非穩態傳輸係數穩態傳輸係數孔隙溶液初始電流
外文關鍵詞:Accelerated chloride migration testNon-steady-state migration coefficientSteady-state migration coefficientPore solutionInitial current
相關次數:
  • 被引用被引用:8
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用加速氯離子傳輸試驗ACMT探討非穩態與穩態傳輸性質之關係,藉此評估初始電流與電量在非穩態階段與穩態階段之適用性,及探討加速氯離子傳輸試驗與鹽水浸漬試驗Ponding test之關係。本試驗材料變數為水膠比 (0.35, 0.45, 0.55, 0.65),飛灰、爐石與飛灰加爐石分別取代 、 與 之水泥量,養護齡期分別為28天、56天與91天。
ACMT是根據ASTM C1202-97及AASHTO T277-96修改其試驗條件,而得到之試驗,將電壓60V 修改成24V,以避免熱效應對試體孔隙結構產生影響,將溶液槽由250ml 加大至4750ml 以方便取得累積氯離子濃度,由ACMT可得到非穩態傳輸係數(Mnc)與穩態傳輸係數(Ms),非穩態傳輸係數所代表的機理為微量的氯離子濃度剛通過混凝土試片進入到陽極槽,令此微量氯離子濃度所對應的時間為氯離子穿過混凝土試片所需的時間稱之為穿透時間(breakthrough time),根據modified Fick's second law計算得到非穩態傳輸係數,利用非穩態傳輸係數來評估氯離子進入混凝土內部之傳輸性質,穩態傳輸係數所代表的機理為隨著試驗時間的增加混凝土孔隙充滿氯離子溶液,各孔隙傳輸途徑之累積氯離子濃度皆以相同的速度前進至陽極槽溶液,根據Nernst-Planck equation計算得到穩態傳輸係數,利用穩態傳輸係數評估混凝土抵抗氯離子穿透之能力,研究結果顯示非穩態傳輸係數與穩態傳輸係數兩者間有良好的線性關係,非穩態傳輸係數較穩態傳輸係數大。評估初始電流與電量之研究顯示,孔隙溶液中離子溶度影響其電流值大小,離子移動速率及導電度的不同在非穩態階段與穩態階段產生了不同的結果,研究結果顯示非穩態階段的電流大部份由OH- 主導,穩態階段電流由Cl-主導,利用初始電流與電量評估氯離子滲透在穩態階段較非穩態階段適合。加速氯離子傳輸試驗與鹽水浸漬試驗結果顯示,由加速氯離子傳輸試驗中得到的非穩態傳輸係數和穩態傳輸係數與鹽水浸漬試驗所得到的傳輸係數隨著養護齡期的增加有良好的線性關係,非穩態傳輸係數和穩態傳輸係數皆大於鹽水浸漬試驗所得到的擴散係數。增加鋼筋保護層厚度對於延緩結構物產生腐蝕之初始時間其效果明顯的較混凝土中添加摻料與提高養護齡期好。
In this study, the electrochemical technique is applied to accelerate chloride migration in concrete to estimate chloride transport properties in non-steady-state and steady-state. Concrete containing different types of mineral admixtures (fly ash and slag) with different water-to-binder ratios (0.35, 0.45, 0.55, and 0.65) were produced and cured in water for 28, 56, 91days respectively.The accelerate chloride migration test is a modified version of the ASTM C1202-97 or AASHTO T277-96 (RCPT) method. The voltage applied between the two electrodes is limited to 24V to avoid any abnormal heating of the sample and to reduce the risk of chloride oxidation on the anode. The cell volume is 4750 ml in ACMT rather than 250ml in RCPT. The increasing solution may reduce the Joule effect on the test result and the accumulative chloride-ion concentration can be measured periodically. According to breakthrough time can be obtained non-steady-state migration coefficient. The non-steady-state migration coefficient is calculated from a modified version of Fick's second law. The chloride flux J measured by the slope of the linear increase in chloride concentration in anode cell. According to chloride flux can be obtained steady-state migration coefficient. The steady-state migration coefficient is calculated on the basis of the Nernst-Planck equation. The results show that non-steady-state migration coefficient and steady-state migration coefficient have a good line correlation in the later age. Non-steady-state migration coefficient is up to 2.8 times higher than steady-state migration coefficient. The non-steady-state and steady-state migration coefficient obtained from ACMT and diffusion coefficient obtained from ponding test have a good line correlation. Non-steady-state and steady-state migration coefficient are higher than diffusion coefficient obtained from Ponding test. The current is controlled by OH-in non-steady-state. Using the initial current or charge passed to estimate chloride penetration capacity in non-steady-state is not an appropriate method. Increasing depth of layer is better than increasing curing age and mineral admixture to retard corrosion in reinforcement structure.
目錄
摘要.........................................i
Abstract...................................iii
目錄.........................................v
表目錄....................................viii
圖目錄......................................ix
第一章 前言..................................1
第二章 文獻回顧..............................3
2-1混凝土添加礦物摻料抵抗氯離子穿透之機理....3
2-2 混凝土孔隙溶液之導電度...................4
2-3 加速氯離子傳輸試驗中離子移動之情形.......5
2-4 加速氯離子傳輸試驗中影響導電度之因素.....8
2-5 加速氯離子傳輸試驗中濃度梯度的變化.......9
2-6 利用外加電場評估氯離子滲透試驗...........9
2-6-1 非穩態傳輸試驗........................10
2-6-2 穩態擴散試驗..........................11
2-6-3 加速氯離子穿透試驗(RCPT ).............11
第三章 試驗計畫............................13
3-1試驗材料變數.............................13
3-2試驗方法與儀器設備.......................16
3-2-1加速氯離子傳輸試驗.....................16
3-2-2氯離子濃度量測-電位滴定法..............20
3-2-3 Ponding test ......................... 21
第四章結果與討論............................23
4-1氯離子的傳輸過程.........................23
4-2非穩態傳輸係數(Mnc ).....................27
4-2-1非穩態傳輸係數之計算...................27
4-2-2過渡時期階段之累積氯離子濃度...........30
4-2-3非穩態傳輸係數與水膠比之關係...........35
4-2-4非穩態傳輸係數與養護齡期之關係.........39
4-3穩態傳輸係數(Ms )........................40
4-3-1穩態傳輸係數計算.......................40
4-3-2氯離子的穿透速率(K)....................42
4-3-3穩態傳輸係數與水膠比之關係.............49
4-3-4穩態傳輸係數與養護齡期之關係...........56
4-4穩態傳輸係數(Ms)與非穩態傳輸係數(Mnc)之關係
............................................57
4-4-1比較穩態傳輸係數與非穩態傳輸係數之機理.57
4-4-2比較穩態傳輸係數與非穩態傳輸係數之差異.60
4-5傳輸係數與初始電流和電量之關係...........63
4-5-1傳輸係數與初始電流之關係...............63
4-5-2傳輸係數與電量之關係...................68
4-6 ACMT與Ponding test之關係................71
4-6-1Ponding test...........................71
4-6-2非穩態傳輸係數與Ponding test擴散係數之關係
............................................72
4-6-3穩態傳輸係數與Ponding test 擴散係數之關係
............................................74
4-7預測鋼筋混凝土結構物產生腐蝕之初始時間...76
4-7-1鋼筋混凝土結構物產生腐蝕之初始時間計算.76
4-7-2水膠比與鋼筋混凝土結構物產生腐蝕之初始時間
之關係......................................78
4-7-3養護齡期與鋼筋混凝土結構物產生腐蝕之初始時
間之關係....................................80
4-7-4鋼筋保護層厚度與鋼筋混凝土結構物產生腐蝕之
初始時間之關係..............................82
4-8抗壓強度.................................86
第五章 結論............................... 88
參考文獻....................................90
參考文獻
1. F. Leng, N. Feng, X. Lu, “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete", Cem. Concr. Res. 30 (2000) 989-992.
2. Z. Liu, J. J. Beaudoin, “An assessment of the relative permeability of cement systems using AC impedance techniques” , Cem. Concr. Res. 29 (1999) 1085-1090.
3. D. R. Crow, “ Principles and Applications of Electrochemistry” , pp.55-72, 1994.
4. M. Thomas, “Chloride thresholds in marine concrete”, Cem. Concr. Res. 26 (1996) 513-519.
5. W. Prince, R. Perami, M. Espagne, “Mechanisms involved in the accelerated test of chloride permeability” , Cem. Concr. Res. 29 (1999) 687-694.
6. O. Truc, J. P. Ollivier, L. O. Nilsson, “ Numerical simulation of multi-species transport through saturated concrete during a migration test - MsDiff code” , Cem. Concr. Res. 30 (2000) 1581-1592.
7. L. Tong, O. E. Gjorv, “ Chloride diffusivity based on migration testing", Cem. Concr. Res. 31 (2001) 973-982.
8. P. E. Streicher, M. G. Alexander, “A chloride conduction test for concrete” , Cem. Concr. Res. 25 (1995) 1284-1294.
9. Nordtest method NT Build 492, “Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments”, 1999.
10. Nordtest method NT Build 355, “Concrete, mortar and cement-based repair materials: Chloride diffusion coefficient from migration cell experiments”, 1997.
11. ASTM C 1202-97, Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration , 1997.
12. R. Feldman, L. R. Prudencio Jr., G. Chan, “Rapid chloride permeability test on blended cement and other concrete: correlations between charge, initial current and conductivity” , Constr. Build. Mater. 13 (1999) 149-154.
13. L. Tang, L. O. Nilsson, “Calculation of chloride diffusivity in concrete from migration experiments, in non-steady-state conditions” , Cem. Concr. Res. 25 (1995) 1133-1137.
14. P. Halamickova, R. J. Detwiler, “water permeability and chloride ion diffusion in Portland cement mortars: Relationship to sand content and critical pore diameter” , Cem. Concr. Res. 25 (1995) 790-802.
15. L. Tang, L. O. Nilsson, “Rapid determination of the chloride diffusivity in concrete by applying an electrical field” , ACI Mater. J. 1-2, pp.49-53, 1992.
16. L. Tang, “Electrically accelerated methods for determining chloride diffusivity in concrete-current development” , Mag. Concr Res, 9, pp173-179, 1996.
17. C. Andrade, “Calculation of chloride diffusion coefficient in concrete from ionic migration measurement” , Cem. Concr. Res. 23 (1993) 724-742.
18. D. S. Kin, C. Y. Lim, S. K. Yang, J. S. Ryu, J. R. Lee, K. Yamada, “The age-dependent diffusivity of the chloride into concrete by electrically accelerated method” , 太平洋水泥研究報告, pp12-19, 2004.
19. 江世哲, “混凝土加速氯離子傳輸試驗中非穩態傳輸性質與孔隙結構之關係” , 海洋大學材料所碩士論文, pp 74-77, 2005.
20. T. Zhang, O. E. Gjorv, “Effect of chloride source concentration on chloride diffusivity in concrete” , ACI Mater. J. 9-10, pp.295-298, 2005.
21. 張峻傑, “以加速氯離子穿透試驗評估混凝土耐久性之研究” ,海洋大學材料所碩士論文, pp 68-73, 2003.
22. C. C. Yang, L. C. Wang, “The diffusion characteristic of concrete with mineral admixtures between salt ponding test and accelerated chloride migration test",Mater. Chem. Phys 85 (2004) 266-272.
23. 林致緯, “以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為” , 海洋大學材料所碩士論文, pp.34-38, 2006.
24. G. Frohnsdorff, “Modelling service life and life-cycle cost of steel-reinforced concrete” , NIST/ACI/ASTM workshop 11, pp.15-17, 1998.
25. AASHTO T260-97. Standard method of test for sampling and testing for chloride ion in concrete and concrete raw materials american association of states highway and transportation officials, Standard specifications-partⅡ, Tests, Washington, DC, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林麗星〈美的自覺—從世說新語看魏晉人物品評〉,《東南學報》,第十九期,1996年12月。
2. 周淑舫〈山林寄詩情、奇葩有異香—東晉謝太傅一門二十位文學家〉,《中國文化月刊》,215期,1998年2月。頁16-29。
3. 周大興〈自然或因果—從東晉玄佛之交涉談起〉,《中國文哲研究集刊》,22期,2003年3月。頁91-126。
4. 辛旗〈魏晉玄學影響下的般若學與六家七宗〉,《中國文化月刊》,1993年9月。
5. 沈維華〈莊子、向郭與支盾之消遙觀試析〉,《中國學術年刊》,第19期,1998年3月
6. 呂琪昌〈從風格分析的角度檢驗王羲之傳世書法墨本〉,《藝術學報》,第72期,頁83-98,2003年8月。
7. 何傳馨〈乾隆的書法鑑賞〉,《故宮學術季刊》,21卷第1期,2003年秋季。頁31-63+215
8. 何傳馨〈晉王羲之定武蘭亭真本〉,《故宮文物月刊》,17卷第8期,頁60-61,1999年11月。
9. 何傳馨〈王羲之報平安:略談「平安何如奉橘帖」〉,《故宮文物月刊》,21卷第7期,頁4-11,2003年10月。
10. 江建俊〈論四玄〉,《成大中文學報》,第8期,2000年6月。頁179-206。
11. 江建俊〈過將三理—聲無哀樂、養生、言盡意論探微〉,《成功大學學報》,第16期,1981年。
12. 亓娟莉〈高山流水,千古風流--談談魏晉名士與古琴〉,《東方人文學誌》,3卷第2期,2004年6月。頁61-75
13. 王元軍〈從徐僧權的押書看王羲之法書的鑒藏〉,《故宮文物月刊》,16卷12期,頁122-133,1999年3月。
14. 王元軍〈王羲之「快 雪時晴帖」中的「君倩」是誰〉,《故宮文物月刊》,16卷11期,頁44-52,1999年2月。
15. 方碧玉〈魏晉人物品評風尚初探—以「世說新語」中琅琊王氏為例〉,《中興史學》,第1期,1994年12月。頁23-43