(1) 鐘燦榮,「鈦合金焊件熱化學處理研究」,銲接與切割,第3卷,第六期,7~19頁,民國82年11月。(2) Mitsuo Niinomi, “Mechanical properties of biomedical titanium alloys”, Materials Science and Engineering, pp. 231~236, 1998.
(3) M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Titanium and Titanium Alloys, Fundamentals and Application”, pp. 2, 2003.
(4) M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Titanium and Titanium Alloys, Fundamentals and Application”, pp. 4, 2003.
(5) M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Titanium and Titanium Alloys, Fundamentals and Application”, pp. 9, 2003.
(6) 葉名世,「鈦合金的氫脆現象」,防蝕工程,第十卷,第三期,146~159頁,民國85年9月。
(7) Chiaki Ouchi, Kuninori Minakawa, Kazuhide Takahashi, Atsushi Ogawa and Misao Ishikawa, “Development of β-rich α-β titanium alloy: SP700”, NNK Technical Review, No. 65, pp. 61~67, 1992.
(8) Takahiro Fujita, Atsushi Ogawa, Chiaki Ouchi, Hidenori Tajima, “Microstructure and properties of titanium alloy produced in the newlt developed blended elemental powder metallurgy process”, Materials Science and Engineering, 213, pp. 148~153, 1996.
(9) Atsushi Ogawa, Masakazu Niikura, Chiaki Ouchi, Kuninori Minakawa and Makato Yamada, “Development and Applications of Titanium Alloy Sp-700 with High Formability”, JTEVA, pp. 100~109, 1996.
(10) M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Titanium and Titanium Alloys, Fundamentals and Application”, pp. 12-16, 2003.
(11) R. Speiser, “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys”, edited by R.W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, NACE – 5, Houston, TX, pp. 226, 1977.
(12) D. Herlach, C. Kottler, T. Wider, K. Maier, “Hydrogen embrittlement of metals”, Physica, 289-290, pp. 443~446, 2000.
(13) M. I. Luppo, A. Hazarabedian, J. Ovejero-Garcia, “Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds”, Corrosion Science, 41, pp. 87~103, 1999.
(14) M. Nagumo, H. Shimura, T. Chaya, H. Hayashi, I. Ochiai, “Fatigue damage and its interaction with hydrogen in martensitic steels”, Materials Science and Engineering, 348, pp. 192~200, 2003.
(15) J. P. Hirth and H. H. Johnson, “Hydrogen problems in energy related technology”, Corrosion, Vol. 32, No.1, pp. 3~26, 1976.
(16) V. A. Goltsov, “ Fundamentals of hydrogen treatment of materials and its classification”, Int. J. Hydrogen Energy, Vol. 22, No.2/3, pp. 119~124, 1997.
(17) V. A. Goltsov, “Hydrogen treatment (processing) of material: current status and prospects”, Journal of Alloys and Compounds, 293-295, pp. 844~857, 1999.
(18) N. Eliaz, D. Eliezer, D. L. Olson, “Hydrogen-assisted processing of materials”, Materials Science and Engineering, 289, pp. 41~53, 2000.
(19) R. G. Vogt, F. H. Froes, D. Eylon and L. Levin, “Titanium Net Shape Technologies”, ed. By F. H. Froes and D. Eylon, TMS-AIME, Warrendale, PA, p. 145, 1984.
(20) Tair-I Wu and Jiann-Kuo Wu, “Effect of electrolytic hydrogenating parameter on structure and composition of surface hydrides of CP-Ti and Ti-6Al-4Valloy”, Materials Chemistry and Physics, 74, pp. 5~12, 2002.
(21) C. Fiebiger, R. Kilian, E. Degelmann, O. Robisch, H. Kaiser and H. Kaesche, Werkstoffe und Korrosion, Vol. 40, pp. 695, 1970.
(22) J. P. Hirth and H. H. Johnson, “Hydrogen problems in energy related technology”, Corrosion, Vol. 32, No.1, pp. 3~26, 1976.
(23) D. N. Willtam, J. Ins. Metal, Vol. 16A, pp. 1077, 1985.
(24) F. H. Froes, D. Eylon and C. Suryanarayana, “Thermochemical processing of titanium alloys”, Journal of Metals, Vol 42(3), pp. 26~29, 1990.
(25) D. Eliezer, N. Eliaz, O. N. Senkov, F. H. Froes, “Positive effects of hydrogen in metal”, Materials Science and Engineering, 280, pp. 220~224, 2000.
(26) O. N. Senkov and F. H. Froes, “Thermohydrogen process of titanium alloys”, International Journal of Hydrogen Energy, 24, pp. 565~576, 1999.
(27) M. A. Murzinova, G. A. Salishchev, D. D. Afonichev, “Fromation of nanocrystalline structure in two-phase titanium alloy by combination of thermohydrogen processing with hot working”, International Journal of Hydrogen Energy, 27, pp. 775~782, 2002.
(28) R. D. McCright, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. W. Staehle and J. Hockmann, eds., NACE-5, p. 306, 1977.
(29) J. A. Kargol, N. F. Fiore and R. J. Coyle, Jr., “Model for H-absorption by metals”, Metall. Trans., Vol. l2A, pp. 183~191, 1981.
(30) T. I. Wu and J. K. Wu, “Surface hardening of Ti-6Al-4V alloy by hydrogenation”, Scripta Metall. Mater., Vol. 25. No. 10, pp. 2335~2338, 1991.
(31) T. I. Wu, L. H. Chiu, C. F. Shyu and Y. F. Wu, Tatung J, Vol. 21, p. 195, 1991.
(32) T. I. Wu and J. K. Wu, Metall. Trans., Vol. 24A, p.1181, 1993.
(33) Tair-I Wu and Jiann-Kuo Wu, “Effects of thiourea and its derivatives on the electrolytic hydrogenation behavior of Ti-6Al-4V alloy”, Materials Letters, Vol. 53, pp. 193~199, 2002.
(34) Tair-I Wu and Jiann-Kuo Wu, “The effects of chemical additives on the hydrogen uptake behavior of Ti-6Al-4V alloy”, Materials Chemistry and Physics, Vol. 80, pp. 150~156, 2003.
(35) I. I. Phillips, P.Poole and L. L. Shreir, “Hydride formation during cathodic polarization of Ti-II. Effect of temperature and pH of solution on hydride growth”, Corrosion Sci., Vol. 14, pp. 533~542. 1974.
(36) Ronald W. Schutz, David E. Thomas, “Corrosion of titanium and titanium alloys”, ASM Handbook, Vol.13: Corrosion, 9th ed. pp. 669~677, 1988.
(37) W. T. Tsai, C. P. Ju, Y. N. Wen and J. T. Lee, “Hydride formation during cathodic polarization of titanium in artificial sea water”, Surface and Coating Technology, Vol. 31, pp. 401~407. 1987.
(38) I. I. Phillips, P. Poole and L. L. Shreir, “Hydride formation during cathodic polarization of Ti-I. Effect of current density on kinetics of growth and composition of hydride”, Corrosion Sci., Vol. 12, pp. 855~866. 1972.
(39) R. N. lyer and H. W. Pickering, “Mechanism and kintics of electrochemical hydrogen entry and degradation of metallic system”, Annu. Rev. Mater.Sci., Vol. 20, pp. 299~388, 1990.
(40) S. I. Pyun and R. A. Oriani, “The permeation of hydrogen through the passivating films on iron and nickel”, Corrosion Sci., Vol. 29, pp. 485~496, 1989.
(41) I. W. Hall, “Hydride precipitation in Ti-6Al-4V”, Scand. J. Metallurgy., Vol. 7, pp. 277~281, 1978.
(42) A. J. Maeland, G. G. Libowitz and J. F. Lynch, J, “Hydride formation rates of titanium-based B.C.C. solid solution alloys”, Less-Common. Metals, Vol. 104, p. 361, 1984.
(43) J. M. Chen and J. K. Wu, Corrosion Sci., Vol. 33, p. 657, 1992.
(44) J. F. Newman and L. L. Shreir, “Role of hydrides in hydrogen entry into steel frpm solutions containing promoters”, Corrosion Sci., Vol. 9, pp. 631~641, 1969.
(45) L. J. Gao and B. E. Conway, “Poisoning effects of arenic species on H adsorption and kinetic behaviour of the H2 evolution reation at Pt in KOH solution”, Journal of Electroanalytical Chemistry, Vol. 395, pp. 261~271, 1995.
(46) S. A. Glazkova and S. G. Bocharova, Chem Pet Eng., Vol. 26, p. 372, 1991.
(47) I. V. Riskin, V. B. Torshin, Y. B. Skuratnik and M. A. Dembrovsky, “Corrosion of titanium by cathodic currents in chloride solutions”, Corrosion-NACE, Vol. 40, p. 266, 1984.
(48) M. A. V. Davanathan and Z. Stachurski, Poy. Soc., Vol. A270, p. 90, 1962.
(49) M. A. V. Davanathan and Z. Stachurski, J. Electrochem. Soc., Vol. 110, p. 886, 1963.
(50) T. I. Wu, C. T. Liu and J. K. Wu, “Use of thiourea to inhibit the incorporation of hydrogen in Ti and Ti-6Al-4V alloy”, Materials Letters., Vol. 30, p.377~383, 1997.
(51) T. I. Wu, C. T. Liu and J. K. Wu, Corrosion NACE., Vol. 53, No. 5, p. 374, 1997