跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:于紀翔
研究生(外文):Ji-Siang Yu
論文名稱:商用純鈦及Ti-4.5Al-3V-2Mo-2Fe合金之電解滲氫研究
論文名稱(外文):The investigation on hydrogenation of commercial-purty titanium and Ti-4.5Al-3V-2Mo-2Fe alloy
指導教授:吳建國吳建國引用關係
指導教授(外文):J.K.Wu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:滲氫鈦及鈦合金
外文關鍵詞:hydrogenationtitanium and titanium alloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
氫在純鈦或鈦合金中不論是固溶的形式或是氫化物的形式,均會影響純鈦及鈦合金的機械性質,最明顯的影響是導致材料脆化。然而利用有效的方式將氫滲入鈦合金後,再經由高溫除氫過程,可獲得表面晶粒細化的效果,進而改善鈦合金的機械性質。在此前題下,欲增加晶粒細化的程度,維在滲氫過程中改變參數,提高氫滲入合金內的濃度與深度。
本研究係利用電解滲氫的方式,酸性環境下(1N H2SO4),來探討時間、添加劑、法拉第數及溫度對商用純鈦及SP700合金的滲氫效果。根據各種分析結果得知,時間方面,商用純鈦電解滲氫9小時為最佳時間,SP700合金則是電解滲氫12小時為最佳;添加劑方面,商用純鈦及SP700合金均是在溶液中添加0.1g/L As2O3滲氫效果最佳;法拉第數方面,商用純鈦及SP700合金均是以大電流密度及短時間下滲氫效果最佳;溫度方面,商用純鈦及SP700合金均是在室溫(25℃)下滲氫效果最佳。
The mechanical properties of titanium and titanium alloys can be greatly affected by the presence of hydrogen in the titanium and titanium alloys either in solid solution or in hydride. The main effect on mechanical properties is embrittlement. However, with proper usage to hydrogenate titanium alloy, followed by high temperature dehydrogenation, grain refinement in the surface microstructure can be achieved, thus improving the mechanical properties of titanium alloys. From this point, in order to thicken refinement depth, the proper way is to select optimal parameters for enhancing the hydrogen content and depth of hydrogen uptake during before dehydrogenation process.
In this study, hydrogenation was carried out by cathodic polarization in acid aqueous. The charging time, additive, faraday and temperature were investigated to evaluate the effect of hydrogenation on commercial purity titanium and SP700 alloy. According to our results and, the best time for commercial purity titanium was 9 hours and for SP700 alloy was 12 hours. For the additive, the most effective addition was 0.1g/L As2O3. For the faraday, the best effect of hydrogenation was shorter time and higher current density. For the temperature, the most effective for hydrogenation was 25℃.
中文摘要 ……………………………………………………… 2
英文摘要 ……………………………………………………… 3
目錄 ……………………………………………………… 4
表目錄 ……………………………………………………… 5
圖目錄 ……………………………………………………… 6
符號說明 ……………………………………………………… 8
一 文獻回顧 …………………………………………… 9
1.1 鈦與鈦合金 …………………………………… 9
1.2 氫對材料的影響 ……………………………… 10
1.3 鈦合金及氫 …………………………………… 10
二、 實驗理論背景 ……………………………………… 17
2.1 鈦合金電解滲氫 ……………………………… 17
2.2 影響電解滲氫之因素 ………………………… 17
2.3 氫含量分析 …………………………………… 19
三、 實驗方法 …………………………………………… 21
3.1 材料及試片準備 ……………………………… 21
3.2 電解液配置 …………………………………… 21
3.3 實驗流程及裝置 ……………………………… 21
3.4 數據分析與整理 ……………………………… 21
四、 結果討論 …………………………………………… 26
五、 結論 ………………………………………………… 67
參考文獻 ……………………………………………………… 70
(1) 鐘燦榮,「鈦合金焊件熱化學處理研究」,銲接與切割,第3卷,第六期,7~19頁,民國82年11月。
(2) Mitsuo Niinomi, “Mechanical properties of biomedical titanium alloys”, Materials Science and Engineering, pp. 231~236, 1998.
(3) M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Titanium and Titanium Alloys, Fundamentals and Application”, pp. 2, 2003.
(4) M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Titanium and Titanium Alloys, Fundamentals and Application”, pp. 4, 2003.
(5) M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Titanium and Titanium Alloys, Fundamentals and Application”, pp. 9, 2003.
(6) 葉名世,「鈦合金的氫脆現象」,防蝕工程,第十卷,第三期,146~159頁,民國85年9月。
(7) Chiaki Ouchi, Kuninori Minakawa, Kazuhide Takahashi, Atsushi Ogawa and Misao Ishikawa, “Development of β-rich α-β titanium alloy: SP700”, NNK Technical Review, No. 65, pp. 61~67, 1992.
(8) Takahiro Fujita, Atsushi Ogawa, Chiaki Ouchi, Hidenori Tajima, “Microstructure and properties of titanium alloy produced in the newlt developed blended elemental powder metallurgy process”, Materials Science and Engineering, 213, pp. 148~153, 1996.
(9) Atsushi Ogawa, Masakazu Niikura, Chiaki Ouchi, Kuninori Minakawa and Makato Yamada, “Development and Applications of Titanium Alloy Sp-700 with High Formability”, JTEVA, pp. 100~109, 1996.
(10) M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Titanium and Titanium Alloys, Fundamentals and Application”, pp. 12-16, 2003.
(11) R. Speiser, “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys”, edited by R.W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, NACE – 5, Houston, TX, pp. 226, 1977.
(12) D. Herlach, C. Kottler, T. Wider, K. Maier, “Hydrogen embrittlement of metals”, Physica, 289-290, pp. 443~446, 2000.
(13) M. I. Luppo, A. Hazarabedian, J. Ovejero-Garcia, “Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds”, Corrosion Science, 41, pp. 87~103, 1999.
(14) M. Nagumo, H. Shimura, T. Chaya, H. Hayashi, I. Ochiai, “Fatigue damage and its interaction with hydrogen in martensitic steels”, Materials Science and Engineering, 348, pp. 192~200, 2003.
(15) J. P. Hirth and H. H. Johnson, “Hydrogen problems in energy related technology”, Corrosion, Vol. 32, No.1, pp. 3~26, 1976.
(16) V. A. Goltsov, “ Fundamentals of hydrogen treatment of materials and its classification”, Int. J. Hydrogen Energy, Vol. 22, No.2/3, pp. 119~124, 1997.
(17) V. A. Goltsov, “Hydrogen treatment (processing) of material: current status and prospects”, Journal of Alloys and Compounds, 293-295, pp. 844~857, 1999.
(18) N. Eliaz, D. Eliezer, D. L. Olson, “Hydrogen-assisted processing of materials”, Materials Science and Engineering, 289, pp. 41~53, 2000.
(19) R. G. Vogt, F. H. Froes, D. Eylon and L. Levin, “Titanium Net Shape Technologies”, ed. By F. H. Froes and D. Eylon, TMS-AIME, Warrendale, PA, p. 145, 1984.
(20) Tair-I Wu and Jiann-Kuo Wu, “Effect of electrolytic hydrogenating parameter on structure and composition of surface hydrides of CP-Ti and Ti-6Al-4Valloy”, Materials Chemistry and Physics, 74, pp. 5~12, 2002.
(21) C. Fiebiger, R. Kilian, E. Degelmann, O. Robisch, H. Kaiser and H. Kaesche, Werkstoffe und Korrosion, Vol. 40, pp. 695, 1970.
(22) J. P. Hirth and H. H. Johnson, “Hydrogen problems in energy related technology”, Corrosion, Vol. 32, No.1, pp. 3~26, 1976.
(23) D. N. Willtam, J. Ins. Metal, Vol. 16A, pp. 1077, 1985.
(24) F. H. Froes, D. Eylon and C. Suryanarayana, “Thermochemical processing of titanium alloys”, Journal of Metals, Vol 42(3), pp. 26~29, 1990.
(25) D. Eliezer, N. Eliaz, O. N. Senkov, F. H. Froes, “Positive effects of hydrogen in metal”, Materials Science and Engineering, 280, pp. 220~224, 2000.
(26) O. N. Senkov and F. H. Froes, “Thermohydrogen process of titanium alloys”, International Journal of Hydrogen Energy, 24, pp. 565~576, 1999.
(27) M. A. Murzinova, G. A. Salishchev, D. D. Afonichev, “Fromation of nanocrystalline structure in two-phase titanium alloy by combination of thermohydrogen processing with hot working”, International Journal of Hydrogen Energy, 27, pp. 775~782, 2002.
(28) R. D. McCright, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. W. Staehle and J. Hockmann, eds., NACE-5, p. 306, 1977.
(29) J. A. Kargol, N. F. Fiore and R. J. Coyle, Jr., “Model for H-absorption by metals”, Metall. Trans., Vol. l2A, pp. 183~191, 1981.
(30) T. I. Wu and J. K. Wu, “Surface hardening of Ti-6Al-4V alloy by hydrogenation”, Scripta Metall. Mater., Vol. 25. No. 10, pp. 2335~2338, 1991.
(31) T. I. Wu, L. H. Chiu, C. F. Shyu and Y. F. Wu, Tatung J, Vol. 21, p. 195, 1991.
(32) T. I. Wu and J. K. Wu, Metall. Trans., Vol. 24A, p.1181, 1993.
(33) Tair-I Wu and Jiann-Kuo Wu, “Effects of thiourea and its derivatives on the electrolytic hydrogenation behavior of Ti-6Al-4V alloy”, Materials Letters, Vol. 53, pp. 193~199, 2002.
(34) Tair-I Wu and Jiann-Kuo Wu, “The effects of chemical additives on the hydrogen uptake behavior of Ti-6Al-4V alloy”, Materials Chemistry and Physics, Vol. 80, pp. 150~156, 2003.
(35) I. I. Phillips, P.Poole and L. L. Shreir, “Hydride formation during cathodic polarization of Ti-II. Effect of temperature and pH of solution on hydride growth”, Corrosion Sci., Vol. 14, pp. 533~542. 1974.
(36) Ronald W. Schutz, David E. Thomas, “Corrosion of titanium and titanium alloys”, ASM Handbook, Vol.13: Corrosion, 9th ed. pp. 669~677, 1988.
(37) W. T. Tsai, C. P. Ju, Y. N. Wen and J. T. Lee, “Hydride formation during cathodic polarization of titanium in artificial sea water”, Surface and Coating Technology, Vol. 31, pp. 401~407. 1987.
(38) I. I. Phillips, P. Poole and L. L. Shreir, “Hydride formation during cathodic polarization of Ti-I. Effect of current density on kinetics of growth and composition of hydride”, Corrosion Sci., Vol. 12, pp. 855~866. 1972.
(39) R. N. lyer and H. W. Pickering, “Mechanism and kintics of electrochemical hydrogen entry and degradation of metallic system”, Annu. Rev. Mater.Sci., Vol. 20, pp. 299~388, 1990.
(40) S. I. Pyun and R. A. Oriani, “The permeation of hydrogen through the passivating films on iron and nickel”, Corrosion Sci., Vol. 29, pp. 485~496, 1989.
(41) I. W. Hall, “Hydride precipitation in Ti-6Al-4V”, Scand. J. Metallurgy., Vol. 7, pp. 277~281, 1978.
(42) A. J. Maeland, G. G. Libowitz and J. F. Lynch, J, “Hydride formation rates of titanium-based B.C.C. solid solution alloys”, Less-Common. Metals, Vol. 104, p. 361, 1984.
(43) J. M. Chen and J. K. Wu, Corrosion Sci., Vol. 33, p. 657, 1992.
(44) J. F. Newman and L. L. Shreir, “Role of hydrides in hydrogen entry into steel frpm solutions containing promoters”, Corrosion Sci., Vol. 9, pp. 631~641, 1969.
(45) L. J. Gao and B. E. Conway, “Poisoning effects of arenic species on H adsorption and kinetic behaviour of the H2 evolution reation at Pt in KOH solution”, Journal of Electroanalytical Chemistry, Vol. 395, pp. 261~271, 1995.
(46) S. A. Glazkova and S. G. Bocharova, Chem Pet Eng., Vol. 26, p. 372, 1991.
(47) I. V. Riskin, V. B. Torshin, Y. B. Skuratnik and M. A. Dembrovsky, “Corrosion of titanium by cathodic currents in chloride solutions”, Corrosion-NACE, Vol. 40, p. 266, 1984.
(48) M. A. V. Davanathan and Z. Stachurski, Poy. Soc., Vol. A270, p. 90, 1962.
(49) M. A. V. Davanathan and Z. Stachurski, J. Electrochem. Soc., Vol. 110, p. 886, 1963.
(50) T. I. Wu, C. T. Liu and J. K. Wu, “Use of thiourea to inhibit the incorporation of hydrogen in Ti and Ti-6Al-4V alloy”, Materials Letters., Vol. 30, p.377~383, 1997.
(51) T. I. Wu, C. T. Liu and J. K. Wu, Corrosion NACE., Vol. 53, No. 5, p. 374, 1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top