|
第六章、參考文獻
1. D. Turnbull, Under What Conditions can a Glass be Formed, Contemp. Phys., 10, p.473, 1969. 2. T. Masumoto and K. Suzuki, Rapidly Quenched Metals IV, 1981. 3. F. E. Luborsky, Amorphous Metallic Alloys, 1983. 4. S. Steeb and H. Warlimont, Rapidly Quenched Metals VI, 1985. 5. Z. P. Lu, C. T. Liu, and W. D. Porter, Appl. Phys. Lett., 83, p.2581, 2003. 6. J. Das, M. B. Tang, and K. B. Kim, “Work-Hardenable’’ Ductile Bulk Metallic Glass, PRL 94, 205501, 2005. 7. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48, p.279, 2000. 8. A. Inoue, Stabilization and high strain-rate superplasticity of metallic supercooled liquid , Materials Science and Engineering, A267, p.171, 1999. 9. L. Q. Xing, D. M. Herlach, M. Cornet, J. P. Dallas, M. F. Trichet and J. P. Chevalier, Mechanical properties of Zr57Ti5Al10Cu20Ni8 amorphous and partially nanocrystallized alloys, Materials Science and Engineering, A226-228, p.874, 1997. 10. S. Pang, T. Zhang, K. Asami and A. Inoue, Formation of bulk glassy Ni-(Co-)Nb-Ti-Zr alloys with high corrosion resistance, Materials Transactions, JIM, 43, p.1771, 2002. 11. H. Katagiri, S. Meguro, M. Yamasaki, H. Habazaki, T. Sato, A. Kawashima, K. Asami and K. Hashimoto, An attempt at preparation of corrosion-resistant bulk amorphous Ni–Cr–Ta–Mo–P–B alloys, Corrosion Science, 43, p.183, 2001. 12. Y. Kawamura, T. Shibata, A. Inoue and T. Masumoto, Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass , Acta Materialia, 46, p.253, 1998. 13. 王一禾、楊膺善, 非晶態合金, 冶金工業出版社, 1989. 14. J. Kramer, Annln Phys., 37, p.19, 1934. 15. J. Kramer, Z. Phys., 106, p.639, 1937. 16. A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., 44, p.109, 1950. 17. W. Klement, R. H. Willens, and P. Duwez, Non-Crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 187, p.869, 1960. 18. P. Duwes, "Structure and Properties of Alloys Rapidly Quenched from the Liquid State", Trans. Am. Soc. Metals, 60, p.607, 1967. 19. R. Pond and R. Maddin, Trans. AIME., 245, pp.2475-2476, 1969. 20. 吳學陞, 工業材料, 149, p.154, 1999. 21. 王一壬、楊膺善, 非晶態合金, 冶金工業出版社, 1989. 22. A. Inoue, in Bulk Amorphous Alloys: practical characteristics and applications, Materials Science Foundations 6, edited by M. Magini and F. H. Wohlbier (Trans Tech Publication Inc, Switzerland), 1999. 23. A. Inoue, in Bulk Amorphous Alloys: preparation and fundamental characteristics, Materials Science Foundations 4, edited by M. Magini and F. H. Wohlbier (Trans Tech Publication Inc, Switzerland), 1998. 24. 戴道生、韓汝琪 等編著, 非晶態物理, 高等學校教學用書, 電子業出版社, China, 1984. 25. H. S. Chen, etal., J. Appl. Phys. Letter, 10, pp.188-284, 1967. 26. H. S. Chen, etal., Zridence of a Glass-Liquid Transition in a Gold-Germanium, J. Chem. Phys., 48, pp.2560-2565, 1968. 27. D. Turnbull, Phase Changes, Solid State Phys. 3, p.225, 1956. 28. M. Hansen, etal., in Constitution of Binary Alloys, pp.206, 1958. 29. D. Wear, etal., Nature, 203, pp.779-784, 1971. 30. W. Kauzman, The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures, Chem. Rev., 43, pp.219-225, 1948. 31. D. Turnbull, Physics of Non-Crystalline Solids. Ed. By J. A. prints (North-Holland), pp.41, 1965. 32. R. J. Greet, etal., Test of Adam-Gobbs Liquid Viscosity Model with 0-Terphenyl Specific-Heat Data, J. Chem. Phys. 47, pp.2185-2189, 1967. 33. J. H. Gibbs, etal., Nature of the Glass Transition and Glass State, J. Chem. Phys., 28, pp.373-375, 1958. 34. Z. P. Lu, and C. T. Liu, A new glass-forming ability criterion for bulk metalic glasses, Acta Materialia, 50, pp.3501-3512, 2002. 35. T. Yamamoto, etal., Formation, Thermal Stablity, Mechanical Properties and Corrosion Resistance of Cu-Zr-Ti-Ni-Nb Bulk Glassy Alloys, Materials Transactions, 44, pp.1147-1152, 2003. 36. C. Qin, etal., Corrosion Behavior of Cu-Zr-Ti-Nd Bulk Glsaay Alloys, Materials Transactions, 44, pp.749-753, 2003. 37. K. Pekala, M. Pekala, and I. Skorvanek, Electrical resistivity of nanocrystalline Fe73.5Nb4.5Cr5Cu1B16 alloys, J. Non-Crystalline Solids, 347, pp.27–30, 2004. 38. W. H. Wang, C. Dong, and C. H. Shek, Bulk metallic glasses, Materials Science and Engineering, R 44, pp.45–89, 2004. 39. J. H. Schneibel, etal., Battery electrode materials based on MgCaNi4, J. Alloys and Compounds, 350, pp.130-135, 2003. 40. Lee, S.-M., and Perng, T.-P., Microstructural correlations with the hydrogenation kinetics of FeTi1+x alloys, J. Alloys and Compounds, 177, pp.107-118, 1991.
41. C. X. Shang, etal., Mechanical alloying and electronic simulations of (MgH2 + M) systems (M = Al, Ti, Fe, Ni, Cu, and Nb) for hydrogen storage, Int. J. Hydrogen Energy, 29, pp.73-80, 2004. 42. K. Hashimoto, Amorphous Alloy Surface, ISIJ International, 29, pp. 539-549, 1989. 43. 鄭振東, 非晶質金屬漫談, 建宏出版社, 台北, 1990. 44. A. Inoue, C. Fan, J. Saida, and T. Zhang, High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles, Science and Technology of Advanced Materials, 1, pp.73–86, 2000. 45. Denny A. Jones, Principles and Prevention of Corrosion, second edition, 1996. 46. D. Szewieczek, J. Tyrlik-Held, Z. Paszenda, J. Mater. Process. Technol., 78, p.171, 1998. 47. S.J. Thorpe, B. Ramaswami, K.T. Aust, J. Electrochem. Soc., 135, p.2162, 1988. 48. H. Ashassi-Sorkhabi, S.H. Rafizadeh, Surf. Coat. Technol., 176, p.318, 2004. 49. P.K. Vencovsky, R. Sanchez, J.R.T. Branco, M. Galvano, Surf. Coat. Technol., 108/109, p.599, 1998. 50. W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael Jr., J.L. Wright, Intermetallics, 10, p.1157, 2002. 51. H.W. Choi, J.H. Cho, J.E. Kim, etal., Calormetric and Structural Properties of Amorphous Zr-Al-Ni Alloys, Scripta mater., 44, p.2027-2030, 2001.
|