跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃祥進
研究生(外文):Hadi Wijaya
論文名稱:鈰基及鈀基塊狀非晶質合金之超塑性成形研究
論文名稱(外文):Study on Superplastic Forming in Ce and Pd Based Bulk Metallic Glasses
指導教授:朱 瑾
指導教授(外文):Jinn Chu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:78
中文關鍵詞:塊狀金屬玻璃
外文關鍵詞:bulk metallic glasses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究是以具有很低的玻璃轉換溫度之Ce70Al10Cu20塊狀金屬玻璃之超塑性成形以及Pd40Ni40P20塊狀金屬玻璃之奈米超塑性成形。由先前的實驗中可得知,鈀基塊狀金屬玻璃在高溫及低的應變速率中具有相當好的牛頓行為。
Ce70Al10Cu20塊狀金屬壓縮變形行為實驗進行以8x10-4 to 7x10-2 sec-1應變範圍。此材料顯示優異之機械成形性,在應變速率為8x10-4 sec-1及420 K其壓縮應變為89%,此材料可從1 mm的厚度壓縮至106 μm。在過冷液態區間試片具有很好的超塑性,經由實驗的結果顯示這合金具有製造微元件的能力。
在奈米成型中對鈀基塊狀金屬玻璃在矽光柵模上及壓克力在鈀基塊狀金屬之壓縮溫度分別為650 K及453 K,成形壓力及時間為10 MPa 和600秒。從矽光柵模中可觀察得到顏色藍、綠、紅,由不同入射角度會影響反射繞射之波長,所以在鈀基塊狀金屬玻璃及壓克力壓印完成後也可清楚的觀察岀其顏色。壓克力之位相移動在繞射圖比鈀基塊狀金屬玻璃光柵大,因為壓克力的成形後收縮量大。矽模及塊狀金屬玻璃光柵的繞射效率接近。因此,鈀基塊狀金屬玻璃期待可取代矽模的材料用以微奈米複製及理想的奈米元件材料製造。
The purpose of this thesis is to study the superplastic forming of Ce70Al10Cu20 bulk metallic glass (BMG) as new rear earth based BMG with quite low glass transition temperature and the grating nanoforming of Pd40Ni40P20 BMG concerning its potential application. In previous study, the Pd-based BMG indicated the perfect Newtonian behavior at high temperatures and low strain rates.
The compressive deformation behavior of a Ce70Al10Cu20 BMG in the supercooled liquid region was investigated at strain rates from 8x10-4 to 7x10-2 sec-1. The material exhibits excellent mechanical formability with a high compressive strain of ~89% at 8x10-4 sec-1 and 420 K. The material could be compressed from a thickness of 1 mm to ~106 μm. Excellent formability in the microscale was demonstrated when the sample was deformed in the supercooled liquid region. The result indicates this alloy is a promising material for fabricating microdevice.
The nanoforming of Pd-based BMG on Si grating die and PMMA on Pd-based BMG grating die were examined at 650 K and 453 K, respectively. The forming pressure was 10 MPa for 600 s. Apparent colors of blue, green and red were identified from the Si grating die, Pd-based BMG and PMMA imprinted gratings as various incident angles affected the wavelength of reflective diffraction. The phase shifts in diffraction pattern are significant in PMMA than Pd-based BMG grating, since PMMA exhibited large shrinkage after forming. The diffraction efficiency values in Si and BMG gratings are compatible. Pd-based BMG could be the Si die replacing material for micro and nano replication. In addition, Pd-based BMG itself is an ideal material in nano device.
Chinese Abstract I
Abstract II
Acknowledgements III
Table of Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
Chapter 2 Background 4
2.1 Bulk Metallic Glasses 4
2.1.1 History of metallic glasses. 4
2.1.2 Classification of Metallic Glasses 7
2.1.3 Structures of BMG and Glass Forming Ability (GFA) 11
2.1.4 Supercooled Liquid Region (SCLR) 18
2.1.5 Production of Bulk Metallic Glasses 19
2.1.5.1 Solidification 19
2.1.5.2 Consolidation 19
2.1.6 Mechanical Properties of Bulk Metallic Glasses 22
2.1.7 Superplasticity of Bulk Metallic Glasses 23
2.2 Ce-based Bulk Metallic Glass 25
2.3 Superplastic Forming of Bulk Metallic Glasses 27
2.4 Products of Bulk metallic Glasses 30
2.5 Grating 31
2.5.1 Grating Concept 31
2.5.2 Reflection Grating 33
2.5.3 Diffraction Intensity 34
2.5.4 Diffraction Efficiency 36
Chapter 3 Experimental Procedure 37
3.1 Mechanical Properties of Ce-based Bulk Metallic Glasses 38
3.1.1 Ce-based BMG Preparation 38
3.1.2 Sample and Die Preparation 38
3.1.3 Compressive Test 39
3.1.4 Material Characterizations 40
3.1.4.1 Chemical Analyses 40
3.1.4.2 Thermal Properties 40
3.1.4.3 Crystal Structure Analysis 40
3.1.4.4 Microstrctural Analyses 40
3.2 Nanoforming of Pd-based BMG as Grating 41
3.2.1 Sample and Die Preparation 41
3.2.2 Imprinting of Grating 42
3.2.3 Diffraction Analysis 43
Chapter 4 Results and Discussion 45
4.1 Mechanical Properties and Deformation of Ce-based BMG 45
4.1.1 Composition 45
4.1.2 Thermal property 45
4.1.3 Crystal Structure 45
4.1.4 Compressive strain 47
4.1.5 S Parameter 47
4.1.6 Mechanical Properties 51
4.1.7 Formability 53
4.1.8 Microstructure analyses 55
4.2 Nanoforming of Pd-based BMG as Grating 59
4.2.1 Identification of Reflective Different colors 59
4.2.2 Microstructural Analyses 61
4.2.3 Diffraction analysis 65
Chapter 5 Conclusions 69
References 71
Appendix 74
Vita 78
1. http://www.its.caltech.edu/ ~vitreloy/development.htm.
2. W. H. Wang, C. Dong and C. H. Shek, Mater. Sci. Eng. 44, 45 (2004).
3. A. Inoue, Acta mater. 48, 279 (2000).
4. W. L. Johnson, MRS Bull. 24 (10), 42 (1999).
5. http://www.liquidmetal.com.
6. J.P. Chu, C. L. Chiang, T. G. Nieh and Y. Kawamura, Intermetallics 10, 1191 (2000).
7. B. Zhang, D. Q. Zhao, M. X. Pan, W. H. Wang and A. L. Greer, Phys. Rev. Lett. 94, 205502 (2005).
8. N. Katsarakis, M. Bender, L. Singleton, G. Kiriakidis and C. M. Soukoulis, Microsystem Technologies 8, 74 (2002).
9. R. T. Wayne, S. Ren´e, S. Andreas and P. H. Hans, Optics Letters 24, 2 (1999).
10. W. Klement, R. H. Willens and P. Duwez, Nature 187, 869 (1960).
11. R. W. Cahn, in Rapidly Solidified Alloys, ed. H. H. Libermann, Marcel Dekker, New York, p. 1, (1993).
12. H.S. Chen, Acta Metall. 22, 1505 (1974).
13. A. L. Drehman, A. L. Greer and D. Turnbull, Appl. Phys. Lett. 41, 716 (1982).
14. W. L. Johnson, Prog. Mater. Sci. 30, 81 (1986).
15. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. JIM 30, 965 (1989).
16. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans. JIM 33, 937 (1992).
17. A. Inoue, Mater. Trans. JIM 36, 866 (1995).
18. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto, Mater. Trans. JIM 34, 1234 (1993).
19. W. H. Wang, C. Dong, C. H. Shek, Mater. Sci. Eng. 44, 45 (2004).
20. A. Inoue and A. Takeuchi, Mater. Sci. Eng. A 16, 375 (2004).
21. D.V. Louzguine and A. Inoue, Mater. Sci. Eng. A 346, 375 (2004).
22. A. Inoue, Bulk Amorphous Alloys. Trans Tech Publications, Zurich, (1998).
23. Japan Institute of Metals, in Metals Databook. Maruzen, Tokyo, p. 8 (1983).
24. Y. Li, S. C. Ng, C. K. Ong, H. H. Hng and T. T. Goh., Scripta Mater. 36, 783 (1997).
25. Z. P. Lu, Y. Li and S. C. Ng, J. Non-Cryst. Solids 270, 103 (2000).
26. T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett. 78, 1213 (2001).
27. T. D. Shen and R. B. Schwarz, Appl. Phys. Lett. 75, 49 (1999).
28. B. S. Murty and K. Hono, Mater. Trans. JIM 41, 1538 (2000).
29. C. T. Liu and Z. P. Lu, Phys. Rev. Lett. 91 (11), 115505 (4) (2002).
30. B. Zhang, M. X. Pan, D. Q. Zhao, and W. H. Wang, Appl. Phys. Lett. 82, 1, 61 (2004).
31. H. W. Jeong, S. Hata and A. Shimokohbe, The 15th IEEE International Conference on MEMS 2002 (Las Vegas).
32. 吳學陞, 工業材料 149, 154 (1999).
33. H. Kato, Y. Kawamura and A. Inoue, Mater. Trans., JIM 37, 70 (1996).
34. G. E. Dieter, Mechanical Metallurgy, second edition, McGraw-Hill Book Company, New York, p. 350-351 (1976).
35. Y. Kawamura, T. Nakamura, A. Inoue, Scripta Mater. 39 (3), 301 (1998).
36. B. Zhang, R. J. Wang, D. Q. Zhao, M. X. Pan and W. H. Wang, Phys. Rev. B 70, 224208 (2004).
37. Y. Saotome, K. Itoh, T. Zhang, and A. Inoue, Scripta mater. 44, 1541 (2001).
38. Y. Saotome, S. Miwa, T. Zhang and A. Inoue, Journal of Material Processing Technology 113, 64 (2001).
39. N. H. Pryds, Mater. Sci. Eng. A 186, 375 (2004).
40. J. Schroers, JOM May, 35 (2005).
41. E W Palmer, M C Hutley, A Franks, J F Verrill and B Gale, Rep. Prog. Phys. 38, 975 (1975).
42. E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, p. 26.
43. Y. Freedman, University Physics, ninth edition, Addison Wesley, p. 1176.
44. M. Omar, M. Roland, S. Felix, N. Wilfried, O. Thomas, D. R. Nico, and P. H. Hans, Optics Letters 29, 13 (2004).
45. J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 50, 113 (1960).
46. E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, p. 35.
47. C. L. Chiang, J. P. Chu, C. T. Lo, T. G. Nieh, Z. X. Wang, and W. H. Wang, Intermetallics 12, 1057 (2004).
48. J. Schroers, and W. L. Johnson, Appl. Phys. Lett. 84, 18 (2004).
49. J. Schroers, B. Lohwongwatana, W. L. Jhonson, and A. Peker, Appl. Phys. Lett. 87, 061912 (2005).
50. Z. X. Wang, D. Q. Zhao, M. X. Pa, W. H. Wang, T. Okada and W. Utsumi, J. Phys.: Condens. Matter 15, 5923 (2003).
51. A. Reger-Leonhard, M. Heilmaier, and J. Eckert, Scripta Mater. 43, 459 (2000).
52. T. Young, “On The Theory of light and colors,” Phil. Trans. II, 399 (1803).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top