跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/20 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉嘉儒
研究生(外文):Jia-Ru Liu
論文名稱:在鍺半導體中磁性產生之研究
論文名稱(外文):The Study of Magnetism Generated in Germanium Semiconductors
指導教授:劉鏞
指導教授(外文):Yung Liou
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:稀釋磁性半導體缺陷磁性
外文關鍵詞:Diluted magnetic semiconductordefectgermaniummagnetism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
我們利用濺鍍製程及熱蒸鍍製程成長出純鍺薄膜及鍺掺雜釩與鍺掺雜鈷薄膜,此外也使用加速器產生2MeV之氫離子去撞擊鍺單晶基板,接著藉由能量散佈能譜儀/掃描式電子顯微鏡、原子力顯微鏡、電子順磁共振量測儀、物理性質量測系統以及超導量子干涉磁量儀分析所有鍺薄膜與試片,討論磁性產生的原理。
由能量散佈能譜儀的分析,鍺薄膜或是鍺基板內除了碳與氧外,沒有任何的磁性雜質;由掃描式電子顯微鏡與原子力顯微鏡的結果中,鍺薄膜在低溫成長非常平整,在高溫成長時可以觀察到晶粒生成;由物理性質量測系統的量測結果,電阻率隨著製程溫度升高與掺雜原子的比例提高而有下降的趨勢;由超導量子干涉磁量儀的量測結果,我們不論在鍺薄膜或是鍺基板上都觀測到了居禮溫度高於400K的室溫鐵磁性,且會隨著載子種類的不同而會有不同的磁性強度。另外在氫離子轟擊的鍺基板上發現了鐵磁相與反鐵磁相的共存;由電子順磁共振量測儀的量測,我們得到缺陷造成之未成對電子的訊號。
根據實驗結果與參考的文獻,我們推測磁性是由薄膜或基板內的結構缺陷所誘發產生的,此磁性隨著缺陷的多寡而改變。
Room temperature ferromagnetism was observed in Ge films, Ge:V films, and Ge:Co films deposited by sputtering and thermal evaporation techniques. The same phenomenon was observed in Ge single crystal wafer samples by irradiating with 2MeV proton beams of different fluence range. From the result of EDS, No magnetic impurity was detected in both Ge films and Ge single crystal wafer samples irradiated by proton ion. The image of both SEM and AFM show flat surface on Ge films deposited at low temperature but faceted surface with small grain at higher growth temperature. In the PPMS measurement, the resistivity of Ge films decrease with the higher growth temperature and higher dopant concentration. From the SQUID results, All Curie temperatures are high than 400K. The magnetization in intrinsic Ge, p-type Ge, n-type Ge films, or Ge single crystal wafer samples irradiated by proton beam are different. (The magnetization in the Ge film or single crystal Ge samples irradiated by proton beams were suppressed if they were deposited or post annealing in hydrogen and oxygen). From EPR measurement, we have found the signal of unpaired electrons that produced by defects.
Finally, the ferromagnetism was attribute to the structural defects in the Ge films or single crystal Ge samples. In the single crystal Ge samples irradiated by proton beams, the magnetic moment may have both ferromagnetic and anti-ferromagnetic coupling between the defects, and the oscillation of the magnetic moment indicated the competition between the ferromagnetic and anti-ferromagnetic coupling.
目錄
頁次
誌謝………………………………………………………………… i
中文摘要…………………………………………………………… ii
英文摘要…………………………………………………………… iii
目錄………………………………………………………………… iv
圖目錄……………………………………………………………… vii
表目錄……………………………………………………………… xvi
符號說明…………………………………………………………… xvii
第一章 前言及研究動機………………………………………… 1
第二章 文獻回顧與實驗原理…………………………………… 4
2.1稀釋磁性半導體……………………………………………… 4
2.1.1 稀釋磁性半導體的原理機制…………………………… 4
2.1.2 稀釋磁性半導體的特性與應用………………………… 7
2.2缺陷誘發鐵磁性……………………………………………… 11
2.2.1 缺陷的種類……………………………………………… 11
2.2.2 缺陷誘發鐵磁性的原理與特性………………………… 15
2.3磁性原理……………………………………………………… 22
2.3.1 物質的磁現象…………………………………………… 22
2.3.2 磁性的種類……………………………………………… 22
2.4薄膜概論……………………………………………………… 25
2.4.1 薄膜的特性……………………………………………… 25
2.4.2 薄膜的生長機制與條件………………………………… 25
2.5薄膜材料的性質……………………………………………… 29
2.5.1 鍺的性質………………………………………………… 29
2.5.2 釩的性質………………………………………………… 29
2.5.3 鈷的性質………………………………………………… 29
第三章 實驗流程與實驗儀器…………………………………… 31
3.1實驗流程……………………………………………………… 31
3.1.1 薄膜實驗步驟…………………………………………… 31
3.1.2 離子轟擊實驗步驟……………………………………… 32
3.2實驗儀器……………………………………………………… 34
3.2.1 濺射鍍膜系統…………………………………………… 34
3.2.2 熱電阻式蒸鍍系統……………………………………… 38
3.2.3 范式加速器系統………………………………………… 39
3.2.4 探針薄膜測厚儀………………………………………… 39
3.2.5 掃瞄式電子顯微鏡……………………………………… 40
3.2.6 X光微區分析………………………………………… 42
3.2.7 原子力顯微鏡…………………………………………… 44
3.2.8 超導量子干涉磁量儀…………………………………… 46
3.2.9 物理性質量測系統……………………………………… 48
3.2.10 電子順磁共振量測儀………………………………… 50
第四章 實驗結果與討論………………………………………… 52
4.1 EDS 實驗結果與討論……………………………………… 52
4.2 SEM及AFM 實驗結果與討論…………………………… 62
4.3 SQUID實驗結果與討論…………………………………… 74
4.4 PPM S 實驗結果與討論…………………………………… 107
4.5 EPR 實驗結果與討論……………………………………… 111
第五章 結論……………………………………………………… 115
參考文獻…………………………………………………………… 116
參考文獻

[1] S. A. Wolf et al., “Spintronics︰A Spin-Base Electronics Vision For The Future”, Science 281, 1488 (2001)
[2] J. K. Furdyna, “Dilute Magnetic Semiconductors”, J. Appl. Phys. 64, R29 (1988)
[3] D.Ferrand et al., “Carrier-Induced Ferromagnetism In p-Zn1-xMnxTe”, Phys. Rev. B 63, 085201 (2001)
[4] H. Munekata, H. Ohno et al., “Dilute Magnetic III-V Semiconductors”, Phys. Rev. Lett. 63, 1849 (1989)
[5] H. Ohno, “Magnetotransport Properties of p-Type (In,Mn)As Dilute Magnetic III-V Semiconductors”, Phys. Rev. Lett. 68, 2664 (1992)
[6] H Ohno et al., “(Ga,Mn)As:A New Diluted Magnetic Semiconductor Based On GaAs”, Appl. Phys. Lett. 69, 363 (1996)
[7] H. Ohno, “Making Nonmagnetic Semiconductors Ferromagnetic”, Science 281, 951 (1998)
[8] A. F. Hebard et al., “Mining for High Tc Ferromagnetism in Ion-implanted Dilute Magnetic Semiconductors”, J. Phys. D:Appl. Phys. 37, 511 (2004)
[9] A. H. Macdonald, P. Schiffer, N. Samarth, “Ferromagnetic Semiconductors:Moving Beyond (Ga,Mn)As”, Nature Mater. 4, 195 (2005)
[10] Daisuke Okazawa, Kansyo Yamamoto, Ayato Nagashima,
Junji Yoshino, “MBE Growth and Properties of 3d Transition Metal-Doped GaAs”, Physica E 10, 229 (2001)
[11] Y. D. Park et al., “A Group-IV Ferromagnetic Semiconductors:MnxGe1-x”, Science 295, 651 (2002)
[12] A. P. Li et al., “Magnetism in MnxGe1-x Semiconductors Mediated by Impurity Band Carrier”, Phys. Rev. B 72, 195201 (2005)
[13] A. P. Li, J. shen, J. R. Thompson, H. H. Weitering, “Ferromagnetic Percolation in MnxGe1-x Dilute Magnetic Semiconductor”, Appl. Phys. Lett. 86, 152507 (2005)
[14] R. Goswami et al., “Growth of Ferromagnetic Nanoparticles in Ge:Fe Thin Films”, Appl. Phys. Lett. 86, 032509 (2005)
[15] F. Tsui et al., “Novel Germanium-Based Magnetic Semiconductors”, Phys. Rev. Lett. 91, 177203 (2003)
[16] N. Pinto et al., “Magnetic and Electronic Transport Percolation in Epitaxial Ge1-xMnx Films” Phys. Rev. B 72, 165203 (2005)
[17] Sungyoul Choi et al., “Ferromagnetism in Cr-Doped Ge”, Appl. Phys. Lett. 81, 3606 (2002)
[18] Sungyoul Choi et al., “Ferromagnetic Properties in Cr, Fe-Doped Ge Single Crystals”, J. Appl. Phys. 93, 7670 (2003)
[19] X. H. Zhou et al., “Ferromagnetism of 3d-Impurities Substituted in Ge”, J. Magn. Magn. Mater. 284, 253 (2004)
[20] T. Dietl et al., “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors”, Science 287, 1019 (2000)
[21] M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, J. M. D. Coey, “Anisotropic Ferromagnetism in Substituted Zinc Oxide”, Phys. Rev. Lett. 93, 177206 (2004)
[22] Nguyen Hoa Hong et al., “Ferromagnetism in Transition-Metal-Doped TiO2 Thin Films”, Phys. Rev. B 70, 195204 (2004)
[23] Nguyen Hoa Hong et al., “Role of Defects in Tuning Ferromagnetism in Dilute Magnetic Oxide Thin Films”, Phys. Rev. B 72, 045336 (2005)
[24] T. C. Kaspar et al., “Negligible Magnetism in Excellent Structure Quality CrxTi1-xO2 Anatase:Contrast with High-Tc Ferromagnetism in Structurally Defective CrxTi1-xO2”, Phys. Rev. Lett. 95, 217203 (2005)
[25] Nguyen Hoa Hong, Joe Sakai, Awatef Hassini, “Magnetic Properties of V-Doped ZnO Thin Films”, J. Appl. Phys. 97, 10D312 (2005)
[26] Nguyen Hoa Hong, Joe Sakai, Awatef Hassini, “Ferromagnetism at Room Temperature with a Large Magnetic Moment in Anatase V-Doped TiO2 Thin Films”, Appl. Phys. Lett. 84, 2602 (2004)
[27] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, “Donor Impurity Band Exchange in Dilute Ferromagnetic Oxide”, Nature Mater. 4, 173 (2005)
[28] M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, “Unexpected Magnetism in a Dielectric Oxide”, Nature 430, 630 (2004)
[29] J. M. D. Coey et al., “Magnetism in Hafnium Dioxide”, Phys. Rev. B 72, 024450 (2005)
[30] D. P. Young et al., “High-Temperature Weak Ferromagnetism in a Low-Density Free-Electron Gas”, Nature 397, 412 (1999)
[31] Tomoski Moriwaka, Takashi Nishioka, Noriaki K. Sato, “Ferromagnetism Induced by Ca Vacancy in CaB6”, J. Phys. Soc. Jpn. 70, 341 (2001)
[32] L. S. Dorneles et al., “Magnetism in Thin Films of CaB6 and SrB6”, Appl. Phys. Lett. 85, 6377 (2004)
[33] S. E. Lofland et al., “ Defect Driven Magnetism in Calcium Hexaboride”, Phys. Rev. B 67, 020410 (2003)
[34] H. R. Ott et al., “Unusual Magnetism of Hexaboride”, Physica B 281&282, 423 (2000)
[35] Tatiana L. Makarova et al., “Magnetic Carbon”, Nature 413, 716 (2001)
[36] J. M. D. Coey et al., “Ferromagnetism of a Graphite Nodule From The Canyon Diablo Meteorite”, Nature 420, 156 (2002)
[37] P. Esquinazi et al., “Induced Magnetic Ordering by Proton Irradiation Graphite”, Phys. Rev. Lett. 91, 227201 (2003)
[38] S. Talapatra et al., “Irradiation-Induced Magnetism in Carbon Nanostructure”, Phys. Rev. Lett. 95, 097201 (2005)
[39] T. Jungwirth et al., “Interlayer Coupling in Ferromagnetic Semiconductor Superlattice”, Phys. Rev. B 59, 9818 (1999)
[40] K. Sato, H. Katayama-Yoshida, “Material Design for Transparent Ferromagnet with ZnO-Based Magnetic Semiconductors”, Jpn. J. Appl. Phys. 39, L555 (2000)
[41] S. J. Pearton et al., “Advances in Wide Bandgap Materials for Semiconductor Spintronics”, Materials Science and Engineering R40, 137 (2003)
[42] 李正中,物理冶金學(上),台北,著者發行 (2001)
[43] Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles, Third edition, PWS-Kent, Boston (1992)
[44] Donald R. Askeland,材料科學與工程,蔡丕樁等譯,三版,全華科技圖書公司出版 (1996)
[45] A. Kaminski, S. Das Sarma, “Polaron Percolation in Dilute Magnetic Semiconductors”, Phys. Rev. Lett. 88, 247202 (2002)

[46] A. Zywietz, J. Furthmullar, F. Bechstedt, “Spin State of Vacancy:From Magnetic Jahn-Teller Distortion to Multiplets”, Phys. Rev. B 62, 6854 (2000)
[47] R. Monnier, B. Delley, “Point Defects, Ferromagnetism, and Transport in Calcium Hexaboride”, Phys. Rev. Lett. 87, 157204 (2001)
[48] Chaitanya Das Pemmaraju, S. Sanvito, “Ferromagnetism Driven by Intrinsic Point Defects in HfO2”, Phys. Rev. Lett. 94, 217205 (2005)
[49] Antonis N. Andriotis et al., “Magnetic Properties of C60 Polymers”, Phys. Rev. Lett. 90, 026801 (2003)
[50] P. O. Lehtinen et al., “Irradiation-Induced Magnetism in Graphite:A Density Functional Study”, Phys. Rev. Lett. 93, 187202 (2004)
[51] Nicola A. Spaldin, Magnetic Materials, Published by The Press Syndicate of The University of Cambridge, Cambridge (2003)
[52] Robert C. O’Handley, Modern Magnetic Materials, John Wiley & Sons, Inc., New York (2000)
[53] 近角聰信著,張煦、李學養譯,磁性物理學,聯經出版 (1982)
[54] 白木靖寬、吉田貞史著,王建義譯,薄膜工程學,全華科技圖書公司 (2003)
[55] 游駿毅,「鐵/鈮多層膜中的電性、磁性與超導性質的研究」,國立中正大學,碩士學位 (2005)
[56] 劉鏞,真空薄膜課堂講義 (2004)
[57] 吳裕慶,機械材料學,大中國圖書公司出版 (1998)
[58] 精密儀器發展中心,真空技術與應用,行政院國家科學委員會精密儀器發展中心出版 (2001)
[59] 胡耀文,「銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究」,國立中央大學,碩士論文 (2004)
[60] 中央研究院物理研究所,磁自旋電子實驗室網頁,http://www.phys.sinica.edu.tw/%7Emagnetic/
[61] 劉志通,「利用熱蒸鍍成長鐵膜及其奈米結構與磁性質之研究」,國立台灣科技大學,碩士論文 (2005)
[62] 汪建民,材料分析,中國材料科學學會出版 (1998)
[63] R. F. Lee, Scanning Electron Microscopy and X-ray Microanalysis, PTR Prentice Hall, New Jersey (1993)
[64] 楊鴻昌,「超導量子干涉磁量儀」,科儀新知,第十二卷第六期,72~79頁 (1991)
[65] 楊鴻昌,「最敏感的感測元件SQUID及其前瞻性應用」,物理雙月刊,第二十四卷五期,652~665頁 (2002)
[66] 謝詩蔚,「Ag/Co奈米複合材料的電子傳輸探討」,國立中央大學,碩士論文 (2004)
[67] New Mexico State University,web site of Physical Chemistry Laboratory,http://www.chemistry.nmsu.edu/studntres/chem435/Lab7/intro.html
[68] Charles Kittel,固態物理學導論,洪連輝等譯,七版,高立圖書公司出版 (1997)
[69] Tae-Wook Kim et al., “Quantum Confinement Effect in Crystalline Silicon Quantum Dots in Silicon Nitride Grown Using SiH4 and NH3”, Appl. Phys. Lett. 88, 123102(2006)
[70] Yoshihiko Kanemitsu et al., “On The Origin of Visible Photoluminescence in Nanometer-Size Ge Crystallites”, Appl. Phys. Lett. 61, 2187(1992)
[71] M. Pereiro, D. Baldomir, and J. E. Aries, “Unexpected Magnetism of Small Silver Cluster”, Physics V1, 0605160(2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top