跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 06:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉文得
研究生(外文):Wen-Der Liu
論文名稱:抑制性基質之生物降解動力學:鹽度影響與參數可檢定性
論文名稱(外文):Kinetics of Inhibitory-Substrate Biodegradation: Salinity Effect and Parameter Identifiability
指導教授:李志源李志源引用關係
指導教授(外文):Chi-Yuan Lee
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:144
中文關鍵詞:甲苯三氯乙烯氯化鈉鹽度甲苯氧化菌酚氧化菌動力模式參數可檢定性
外文關鍵詞:toluenephenoltrichloroethyleneNaCl salinitytoluene oxidizing culturephenol oxidizing culturekinetic modelparameter identifiability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
摘要
抑制性基質生物降解過程會對微生物產生抑制現象,因而增加動力模式分析之困難;尤其降解時若存在鹽度,會使動力模式分析更加複雜,不易求得動力參數。本研究主要探討甲苯(輕微抑制性)、酚(自我抑制性)及三氯乙烯(TCE,共代謝抑制性)等三種化合物在不同氯化鈉鹽度(NaCl= 0- 5%)下的生物降解。研究方法除了進行批次試驗外,並以動力模式模擬觀測值,利用非線性迴歸法求取動力參數。對於淡水試驗組所得之動力參數,其可檢定性也利用相關係數及聯合信賴區間圖法加以檢驗。
在降解試驗之前,先培養四種混合微生物,分別為氯化鈉濃度為0及3.5%的水溶液中培養之淡水甲苯氧化菌(LHTO4)、鹽水甲苯氧化菌(HHTO4);以及淡水酚氧化菌(LHPO6)與鹽水酚氧化菌(HHPO6)。培養所得之LHTO4與HHTO4菌用以分解甲苯、TCE以及甲苯、TCE混合物;而LHPO6與HHPO6則僅用以分解酚。降解試驗以批次方式測試基質在氯化鈉為0, 2, 3.5及5%的水溶液中被淡水菌降解的速率,以及在氯化鈉為3.5%的水溶液中被鹽水菌降解的情況。
結果發現對於甲苯的生物降解,當NaCl濃度由0增至5%,LHTO4生長係數與甲苯降解速率皆隨鹽度增加而降低。鹽度對於降解速率之影響,以非競爭抑制模式分析,所得常數為n= 4.6, KT= 25.3 g/L。在NaCl= 3.5%,甲苯被LHTO4降解之最大比基質降解速率k值(0.15 h-1)小於被HHTO4降解之k值(0.23 h-1),表示鹽度馴化已提高降解效率。用以描述甲苯降解的Monod模式參數,經可檢定性分析結果發現k與半速率常數KS相關性高,所以其可檢定性低。
對於酚的生物降解,試驗結果顯示LHPO6生長係數與酚降解速率同樣隨鹽度增加而減少。鹽度對降解速率造成之非競爭抑制,其常數為n= 1.3, KT= 34.5 g/L。比較酚在NaCl=3.5%被LHPO6與HHPO6降解速率,發現馴化可增進酚在鹽度下之降解效果。以淡水環境下六個批次降解數據為樣本,測試Haldane模式參數之可檢定性。結果發現以降解期間比生長速率法(GRIB method)所得的參數可檢定性最高,平均相關係數達0.693。而傳統單一基質降解曲線法及初始比生長速率法所得的參數平均相關係數皆大於0.9,難以獲得可靠的參數值。
對於TCE的生物降解,試驗發現TCE被淡水甲苯氧化菌(LHTO4)降解之轉化能力與降解速率隨NaCl鹽度增加而降低。鹽度對降解速率之非競爭抑制常數為n= 1.7, KT= 46.1 g/L。比較在3.5%NaCl下,TCE被LHTO4與HHTO4菌降解之情況,發現 HHTO4仍保有降解甲苯能力,但共代謝TCE能力卻大幅降低。當甲苯與TCE混合,HHTO4降解TCE的能力提昇,且所有試驗皆顯示甲苯對TCE的競爭抑制大於TCE對甲苯抑制,尤其在高鹽度時更為明顯。模式參數可檢定性分析方面,利用酚氧化菌在resting cells情況下,添加及未添加甲酸鹽的共代謝TCE數據(Lee and Cheng, 1998)來進行。結果發現利用修正Monod模式描述TCE降解時,因為TCE都在低濃度範圍,所以參數k與KS無法唯一檢定。而其中未添加甲酸鹽的降解數據可成功檢定TC與k/KS,但添加甲酸鹽的降解數據仍因TC與k/KS相關性高而無法順利檢定。
Abstract
Although the biodegradation of inhibitory substrates in fresh water has been extensively studied and quantified using a kinetic model, the extent and rate of the degradation of the compounds in saline water have seldom been addressed. This study investigates how salinity affects the biodegradations of three substrates: toluene (characterized with negligible inhibition), phenol (self inhibition) and trichloroethylene (TCE, competitive inhibition). Additionally, parameter identification analysis was performed using approaches of the correlation coefficient and the joint confidence region to examine the reliability of the parameters of kinetics describing the degradation of the three substrates in fresh water.
Prior to the biodegradation tests, four mixed cultures were cultivated. They were LHTO4 (cultivated with toluene dissolved in fresh water as the sole carbon source), HHTO4 (with toluene in saline water with 3.5% NaCl), LHPO6 (with phenol in fresh water) and HHPO6 (with phenol in saline water with 3.5% NaCl). Tests were conducted on phenol biodegradation using culture LHPO6 in NaCl salinities of 0, 2, 3.5 and 5% and using HHPO6 in 3.5% NaCl. Toluene, TCE and the toluene-TCE mixture were also degraded by the culture LHTO4 in NaCl salinities of 0, 2, 3.5and 5%, while degradations by HHTO4 were conducted in 3.5% NaCl.
Experimental results indicate that when toluene was degraded by culture LHTO4, NaCl acted as a non-competitive inhibitor, where inhibition coefficients used in the model were n= 4.6 and KT= 25.3 g/L for substrate degradation. The results show that the rate and extent of toluene degradation in 3.5% NaCl by culture HHTO4 were better than those obtained by culture LHTO4. The identification of parameters for toluene degradation in fresh water revealed that the correlation between k and KS was high and the identifiability was low.
When phenol was applied as the growth substrate utilized by LHPO6 in saline waters, the NaCl concentration similarly affected bacterial growth and substrate degradation. The noncompetitive inhibition coefficients were n= 1.3 and KT= 34.5 g/L for substrate degradation. For the phenol degradation by culture HHPO6 at NaCl 3.5%, both Yobs and k were higher than those obtained using culture LHPO6 in the same salinity. With respect to the parameter identifiability, the Haldane kinetics that describes phenol degradation in fresh water is more accurately estimated by the GRIB method than by other conventional methods. GRIB method yields high identifiability parameters, where the average correlation coefficient was as low as 0.693.
The degradations of TCE by cultures LHTO4 and HHTO4 were more complex than those of toluene and phenol. While TCE was used as a cometabolic substrate for culture LHTO4 in resting cells, the TCE transformation capacity and specific growth rate decreased as the salinity increased from NaCl 0 to 5%. The noncompetitive inhibition coefficients were n= 1.7 and KT= 46.1 g/L for TCE degradation. In 3.5% NaCl solution, toluene and TCE were individually degraded by culture HHTO4, indicating that the halotolerant culture HHTO4 could maintain its capability to degrade toluene but lost its effectiveness in cometabolic transformation of TCE. In the presence of toluene, TCE degradation was more inhibited by toluene than toluene degradation was by TCE. The rate and capacity of TCE transformation by culture HHTO4 was improved when toluene was present. The analyses of parameter identifiability for the modified Monod kinetics describing TCE biodegradation indicate that k and KS were strongly correlated. When k/KS and TC were used as surrogate parameters, they became identifiable if formate was amended as the source of the reducing power of the bacteria.
目錄
頁次
謝誌 i
中文摘要 ii
英文摘要 iv
目錄 vii
表目錄 x
圖目錄 xii
符號表 xiv
第一章 緒言 1
1.1研究動機 1
1.2研究目的 3
1.3 研究內容 3
1.4 論文架構 4
第二章 文獻回顧 5
2.1鹽度對微生物的影響 5
2.2鹽度對有機物生物降解的影響 5
2.2.1 甲苯 7
2.2.2酚 10
2.2.3 三氯乙烯 12
2.3 有機物生物降解動力模式參數可檢定性 13
第三章 生物降解試驗材料與方法 16
3.1 菌種的培養 16
3.2主要藥品 17
3.3批次試驗 18
3.4 檢測分析 20
第四章 批次生物降解模式與參數檢定 23
4.1甲苯批次生物降解動力模式 23
4.2酚批次生物降解動力模式 25
4.3三氯乙烯批次生物降解動力模式 27
4.4 模式參數檢定方法 28
4.5模式參數可檢定性分析方法 29
第五章 甲苯之生物降解 33
5.1 試驗結果 33
5.2 模式參數檢定 35
5.3 Monod模式參數可檢定性分析 37
5.4 討論 40
第六章 酚之生物降解 41
6.1試驗結果 41
6.2模式參數檢定 43
6.3 Haldane模式參數可檢定性分析 46
6.3.1 批次試驗結果 46
6.3.2 以初始比生長速率法(IGRA Method)檢定參數 46
6.3.3 以單一基質降解曲線法(SDES Method)檢定參數 47
6.3.4 以降解期間比生長速率法(GRIB Method)檢定
參數 51
6.3.5 討論 54
6.4 以生物放大效應方程式進行Haldane模式參數檢定 61
6.5討論 63
第七章 三氯乙烯之生物降解 66
7.1試驗結果 66
7.2模式參數檢定 69
7.3 TCE共代謝模式參數可檢定性分析 73
7.3.1 k與KS的可檢定性分析 74
7.3.2 k/KS與TC的可檢定性分析 76
7.4討論 80
第八章 結論與建議 82
8.1 結論 82
8.2 建議 84
參考文獻 86
附錄A 批次試驗數據 94
附錄B 參數檢定程式碼 115
參考文獻
Alagappan, G., Cowan, R.M., 2003. Substrate inhibition kinetics for toluene and benzene degrading pure cultures and a method for collection and analysis of respirmetric data for strongly inhibited cultures. Biotechnol. Bioeng. 83, 798-809.
Alagappan, G., Cowan, R.M., 2004. Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and touene. Chemosphere 54, 1255-1265.
Alva, V.A., Peyton, B.M., 2003. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ. Sci. Technol. 37, 4397-4402.
Alvarez-Cohen, L., McCarty, P.L., 1991a. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57, 228-235.
Alvarez-Cohen, L., McCarty, P.L., 1991b. A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol. 25, 1381-1386.
Alvarez-Cohen, L., Speitel Jr., G.E., 2001. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12, 105-126.
Andrews, J.F., 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707-723.
Arcangeli, J.P., Arvin, E., 1997. Modeling of the cometablic biodegradation of trichloroethylene by toluene-oxidizing bacteria in a biofilm system. Environ. Sci. Technol. 31, 3044-3052.
Bastos A.E.R., Moon, D.H., Rossi, A., Trevors, J.T., Tsai, S.M., 2000. Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples. Arch. Microbiol. 174, 346-352.
Chang, H.L.,Alvarez-Cohen, L., 1995a. Model for the cometabolic biodegradation of chlorinated organics. Environ. Sci. Technol. 29, 2357-2367.
Chang, H.L., Alvarez-Cohen, L., 1995b. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol. Bioeng. 45, 440-449.
Chang, M.K., Voice, T.C., Criddle, C.S., 1993. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol. Bioeng. 41, 1057-1065.
Chappell, M.J., Godfrey, K.R., 1992. Structural identifiability of the parameters of a nonlinear batch reactor model. Math. Biosci. 108, 241-251.
Choi, Y.B., Lee, J.Y., Kim, H.S., 1992. A novel bioreactor for the biodegradation of inhibitory aromatic solvents: experimental results and mathematical analysis. Biotechnol. Bioeng. 40, 1403-1411.
Christof, O., Seifert, R., Michaelis, W., 2002. Volatile halogenated organic compounds in European estuaries. Biogeochemistry 59, 143-160.
Cox, C.D., Woo, H.J., Robinson, K.G., 1998. Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Wat. Sci. Tech. 37, 97-104.
Dewulf, J., Drijvers, D., van Langenhove, H., 1995. Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range. Atmos. Environ. 29, 323-331.
Diks, R.M.M., Ottengraf, S.P.P., van den Oever, A.H.C., 1994. The influence of NaCl on the degradation rate of dichloromethane by Hyphomicrobium sp.. Biodegradation 5, 129-141.
Dikshitulu S., Baltzis, B.C., Lewandowski, G.A., Pavlou, S., 1993. Competition between two microbial populations in a sequencing fed-batch reactor: theory, experimental verification, and implications for waste treatment applications. Biotechnol. Bioeng. 42, 643-656.
Dincer A. R., Kargi, F., 2001. Salt inhibition kinetics in nitrification of synthetic saline wastewater. Enzyme Microbial Tech. 28, 661-665.
Dochain, D., Vanrolleghem, P.A., Van Daele, M., 1995. Structural identifiability of biokinetic models of activated sludge respiration. Water Res. 29, 2571-2578.
Draper, N.R., Smith, H., 1981. Applied regression analysis. 2nd Ed., John Wiley & sons, New York.
Duetz, W.A., Wind, B., van Andel, J.G.., Barnes, M.R., Williams, P.A., Rutgers, M., 1998. Biodegradation kinetics of toluene, m-xylene, p-xylene and their intermediates through the upper TOL pathway in Pseudomonas putida (pWW0). Microbiology, 144, 1669-1675.
El-Farhan, Y.H., Scow, K.M., Fan, S., Rolston, D.E., 2000. Kinetics of trichloroethylene cometabolism and toluene biodegradation: Model application to soil batch experiments. J. Environ. Qual. 29, 778-786.
Ellis, T.G., Barbeau, D.S., Smets, B.F., Grady Jr., C.P.L., 1996. Respirometric technique for determination of extant kinetic parameters describing biodegradation. Water Environ. Res. 68, 917-926.
Goudar, C.T., Ganji, S.H., Pujar, B.G., Strevett, K.A., 2000. Substrate inhibition kinetics of phenol biodegradation. Water Environ. Res. 72, 50-55.
Hack, C.J., Woodley, J.M., Lilly, M.D., Liddell, J.M., 2000. Design of a control system for biotransformation of toxic substrates: toluene hydroxylation by Pseudomonas putida UV4. Enz. Microb. Technol. 26, 530-536.
Heald, S., Jenkins, R.O., 1994. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl. Environ. Microbiol. 60, 4634-4637.
Hill, G.A., Robinson, C.W., 1975. Substrate inhibition kinetics: phenol degradation by Pseudomonas putida. Biotechnol. Bioeng. 17, 1599-1615.
Hinteregger, C., Streichsbier, F., 1997. Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic wastewater. Biotechnol. Lett. 19, 1099-1102.
Holmberg, A., 1982. On practical identifiability of microbial growth models incorporating Michaelis-Menren type nonlinearities. Math. Biosci. 62, 23-43.
Homoda, M.F., Al-Attar, I.M.S., 1995. Effects of high sodium chloride concentrations on activated sludge treatment. Wat. Sci. Tech. 31, 61-72.
Ingram, M., 1940. The influence of sodium chloride and temperature on the endogenous respiration of Bacillus circus. J. Gen. Physiol. 23, 773-778.
Jung, I.G., Park, O.H., 2005. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration. J. Biosci. Bioeng. 100, 657-661.
Kargi, F., Dincer, A.R., 1996, Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation. Enzyme Microb. Technol. 19, 529-537.
Kargi, F., Dincer, A.R., 1999. Salt inhibition effects in biological treatment of saline wastewater in RBC. J. Environ. Eng. ASCE 125, 966-971.
Kargi, F., Uygur, A., 1996. Biological treatment of saline wastewater in an aerated percolator unit utilizing Halophilic Bacteria. Environ. Technol. 17, 325-330.
Kelly, W.R., Hornberger, G.M., Herman, J.S., Mills, A.L., 1996. Kinetics of BTX biodegradation and mineralization in batch and column systems. J. Contam. Hydrol. 23, 113-132.
Kelly, C.J., Bienkowski, P.R., Sayler, G.S., 2000. Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism. Biotechnol. Bioeng. 69, 256-265.
Kesavan, P., Law, V.J., 2005. Practical identifiability of parameters in Monod kinetics and statistical analysis of residuals. Biochem. Eng. J. 24, 95-104.
Kincannon, D.F., Guady, A.F., 1968. Response of biological waste treatment system to changes in salt concentrations. J. Biotechnol. Bioengrg.10, 483-496.
Kotturi, G., Robinson, C.W., Inniss, W.E., 1991. Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl. Microbiol. Biotechnol. 34, 539-543.
Lai, M.C., Sowers, K.R., Robertson, D.E., Roberts, M.F., Gunsalus, R.P., 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173, 5352-5358.
Landa, A.S., Sipkema, E.M., Weijma, J., Beenackers, A.A.C.M., Dolfing, J., Janssen, D.B., 1994. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat wirh toluene as the primary substrate. Appl. Environ. Microbiol. 60, 3368-3374.
Lau, P.C.K., Bergeron, H., Labbe, D., Wang, Y., Brousseau, R., Gibson D.T., 1994. Sequence and expression of the todGIH genes involved in the last three steps of toluene degradation by Pseudomonas putida F1. Gene 146,7-13.
Lee, C.Y., Chan, Y.C., Lin, C.L., 2005. The effect of salinity on trichloroethylene co-metabolism by mixed cultures enriched on phenol. World J. Microbiol. Biotechnol. 21, 359-365.
Lee, C.Y., Cheng, S.Z., 1998. Trichloroethylene biodegradation by phenol-oxidizing cultures grown from various conditions. J. Environ. Sci. Health B33, 705-721.
Lee, C.Y., Lin, C.H., 2006. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress. J. Ind. Microbiol. Biotechnol. 33, 37-44.
Lee, C.Y., Liu, W.D., 2000. The identifiability of kinetic parameters of trichloroethylene biodegradation by phenol-oxidizing cultures grown from various conditions. J. Environ. Sci. Health A35, 31-78.
Lee, C.Y., Liu, W.D., 2006. The effect of salinity conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures. J. Haz. Mater. (in press).
Li, S., Wackett, L., 1992. Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Commun. 185,443-451.
Liu, W.D., Lee, C.Y., 2001. Kinetic analysis of inhibitory substrate degradation in bioaugmented activated sludge process. J. Environ. Sci. Health A36, 243-257.
Ludzack, F. J., Noran, D. K., 1965. Tolerance of high sanilities by conventional wastewater treatment processes. J. Water Pollution Control Fed. 37, 1404-1416.
Maliyekkal, S.M., Rene, E.R., Philip, L., Swaminathan, T., 2004. Performance of BTX degraders under substrate versatility conditions. J. Haz. Mater. B109, 201-211.
Margesin, R., Schinner, F., 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73-83.
Mars, A.E., Houwing, J., Dolfing, J., Janssen, D.B., 1996. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl. Environ. Microbiol. 62, 886-891.
Mars, A.E., Prins, G.T., Wietzes, P., de Koning, W., Janssen, D.B., 1998. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria. Appl. Microbiol. Biotechnol. 64, 208-215.
Marsili-Libelli, S., Guerrizio, S., Checchi, N., 2003. Confidence regions of estimated parameters for ecological systems. Ecol. Model. 165, 127-146.
McCarty, P.L., Goltz, M.N., Hopkins, G..D., Dolan, M.E., Allan, J.P., Kawakami, B.T., Carrothers, T.J., 1998. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ. Sci. Technol. 32, 88-100.
Mille, G., Almallah, M., Bianchi, M., van Wambeke, F., Bertrand, J.C., 1991. Effect of salinity on petroleum biodegradation. Fresenius J. Anal. Chem. 339, 788-791.
Mirpuri, R., Jones, W., Bryers, J.D., 1997. Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G. Biotechnol. Bioeng. 53, 535-546.
Monod, J., 1949. The growth of bacterial cultures. A. Rev. Microbiol. 3, 371-394.
Nicholson, C.A., Fathepure, B.Z., 2005. Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol. Let. 245, 257-262.
Oh, Y.S., Shareefdeen, Z., Baltzis, B.C., Bartha, R., 1994. Interaction between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnol. Bioeng. 44, 533-538.
Onysko, K.A., Bidman, H.M., Robinson, C.W., 2000. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol. Bioeng. 70, 291-299.
Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. 63, 334-348.
Oren, A., 2002. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotehnol. 28, 56-63.
Pawlowsky, U., Howell, J.A., 1973. Mixed culture biodegradation of phenol. I. determination of kinetic parameters. Biotechnol. Bioeng. 15, 889-896.
Pedersen, A.R., Moller, S., Arvin, E., 1997. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment. Biotechnol. Bioeng. 54, 131-141.
Peyton, B.M., Wilson, T., Yonge, D.R., 2002. Kinetics of phenol biodegradtion in high salt solutions. Wat. Res. 36, 4811-4820.
Pirt, S.J., 1965. The maintenance energy of bacteria in growing cultures, Proc. R. Soc. London. 163B, 224-371.
Pritchard D.J., Bacon, D.W., 1978. Prospects for reducing correlations among parameters in kinetic models. Chem. Eng. Sci. 33, 1539-1543.
Reardon, K.F., Mosteller, D.C., Bull Rogers, J.D., 2000. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol. Bioeng. 69, 385-400.
Reinhard, M., Goodman, N.L., Barker, J.F., 1984. Occurrence and distribution of organic chemicals in two landfill leachate plumes. Environ. Sci. Technol. 18, 953-961.
Robinson, J.A., 1985. Determining microbial kinetic parameters using nonlinear regression analysis. Adv. Microb. Ecol. 8, 61-114.
Robinson, J.A., Tiedje, J.M., 1983. Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Appl. Environ. Microbiol. 45, 1453-1458.
Robinson, K.G., Pieters, J.G., Sanseverino, J., Cox, C.D., Wright, C.L., Cheng, C.L., Salyer, G.S., 1998. Microbial oxidation and bioluminescence response for toluene and trichloroethylene. Wat. Sci. Tech. 38, 1-8.
Rozich, A.F., Gaudy, Jr. A.F., 1984. Critical point analysis for toxic waste treatment. J. Environ. Eng. ASCE. 110, 562-572.
Saez, B.P., Rittmann, B.E., 1993. Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol). Biodegradation 4, 3-21.
Schönduve, P., Sàra, M., Friedl, A., 1996. Influence of physiologically relevant parameters on biomass formation in a trickle-bed bioreactor used for waste gas cleaning. Appl. Microbiol. Biotechnol. 45, 286-292.
Seagren, E.A., Kim, H., Smets, B.F., 2003. Identifiability and retrievability of unique parameters describing intrinsic Andrews kinetics. Appl. Microbiol. Biotechnol. 61, 314-322.
Seker, S., Beyenal, H., Salih, B., Tanyolac, A., 1997. Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Appl.Microbiol. Biotechnol. 47, 610-614.
Shingleton, J.T., Applegate, B.A., Baker, A.J., Sayler, G.S., Bienkowski, P.R., 2001. Quantification of toluene dioxygenase induction and kinetic modeling of TCE cometabolism by Pseudomonas putida TVA8. Biotechnol. Bioeng. 76, 341-350.
Shurtliff, M.M., Parkin, G.F., Weathers, L.J., Gibson, G.T., 1996. Biotranfomation of trichloroethylene by a phenol-induced mixed culture. J. Environ. Engrg. 122, 581-589.
Smith, L.H., Kitanidis, P.K., McCarty, P.L., 1997. Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture. Biotechnol. Bioeng. 53, 320-331.
Sun, A.K., Wood, T.K., 1996. Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 45, 248-256.
Tam, N.F.Y., Guo, C.L., Yau, W.Y., Wong, Y.S., 2002. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Mar. Pollut. Bull. 45, 316-324.
van Duren, B.L., Banerfee, S., 1976. Covalent interaction of metabolites of the carcinogen trichloroethylene in rat heatic microsomes. Cancer Res. 36, 2419-2422.
Vanrolleghem, P.A., Van Daele, M., Dochain, D., 1995. Practical identifiability of a biokinetic model of activated sludge respiration. Water Res. 29, 2561-2570.
Versyck, K.J., Claes, J.E., Van Impe, J.F., 1997. Practical identification of unstructured growth kinetics by application of optimal experimental design. Biotechnol. Prog. 13, 524-531.
Westrick, J.J., Mello, J.W., Rhomas, R.F., 1984. The groundwater supply survey. J. AWWA. 5, 52-59.
Woolard, C.R., Irvine R.L., 1994. Biological treatment of hypersaline wastewater by a film of halophilic bacteria. Wat. Environ. Res. 66, 230-235.
Woolard, C.R., Irvine R.L., 1995. Treatment of hypersaline wastewater in the sequencing batch reactor. Wat. Res. 29, 1159-1168.
Yanase, H., ZuZan, K., Kita, K., Sogabe, S.,Kato, N, 1992. Degradation of phenol by thermophilic and halophilic bacteria isolated from a marine brine sample. J. Ferm. Bioeng. 74, 297-300.
Yang, R.D., Humphrey, A.E., 1975. Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioeng. 17, 1211-1235.
Yano, T., Koga, S., 1969. Dynamic behavior of the chemostat subject to substrate inhibition. Biotechnol. Bioeng. 11, 139-153.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top