|
參考文獻 Alagappan, G., Cowan, R.M., 2003. Substrate inhibition kinetics for toluene and benzene degrading pure cultures and a method for collection and analysis of respirmetric data for strongly inhibited cultures. Biotechnol. Bioeng. 83, 798-809. Alagappan, G., Cowan, R.M., 2004. Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and touene. Chemosphere 54, 1255-1265. Alva, V.A., Peyton, B.M., 2003. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ. Sci. Technol. 37, 4397-4402. Alvarez-Cohen, L., McCarty, P.L., 1991a. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57, 228-235. Alvarez-Cohen, L., McCarty, P.L., 1991b. A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol. 25, 1381-1386. Alvarez-Cohen, L., Speitel Jr., G.E., 2001. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12, 105-126. Andrews, J.F., 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707-723. Arcangeli, J.P., Arvin, E., 1997. Modeling of the cometablic biodegradation of trichloroethylene by toluene-oxidizing bacteria in a biofilm system. Environ. Sci. Technol. 31, 3044-3052. Bastos A.E.R., Moon, D.H., Rossi, A., Trevors, J.T., Tsai, S.M., 2000. Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples. Arch. Microbiol. 174, 346-352. Chang, H.L.,Alvarez-Cohen, L., 1995a. Model for the cometabolic biodegradation of chlorinated organics. Environ. Sci. Technol. 29, 2357-2367. Chang, H.L., Alvarez-Cohen, L., 1995b. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol. Bioeng. 45, 440-449. Chang, M.K., Voice, T.C., Criddle, C.S., 1993. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol. Bioeng. 41, 1057-1065. Chappell, M.J., Godfrey, K.R., 1992. Structural identifiability of the parameters of a nonlinear batch reactor model. Math. Biosci. 108, 241-251. Choi, Y.B., Lee, J.Y., Kim, H.S., 1992. A novel bioreactor for the biodegradation of inhibitory aromatic solvents: experimental results and mathematical analysis. Biotechnol. Bioeng. 40, 1403-1411. Christof, O., Seifert, R., Michaelis, W., 2002. Volatile halogenated organic compounds in European estuaries. Biogeochemistry 59, 143-160. Cox, C.D., Woo, H.J., Robinson, K.G., 1998. Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Wat. Sci. Tech. 37, 97-104. Dewulf, J., Drijvers, D., van Langenhove, H., 1995. Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range. Atmos. Environ. 29, 323-331. Diks, R.M.M., Ottengraf, S.P.P., van den Oever, A.H.C., 1994. The influence of NaCl on the degradation rate of dichloromethane by Hyphomicrobium sp.. Biodegradation 5, 129-141. Dikshitulu S., Baltzis, B.C., Lewandowski, G.A., Pavlou, S., 1993. Competition between two microbial populations in a sequencing fed-batch reactor: theory, experimental verification, and implications for waste treatment applications. Biotechnol. Bioeng. 42, 643-656. Dincer A. R., Kargi, F., 2001. Salt inhibition kinetics in nitrification of synthetic saline wastewater. Enzyme Microbial Tech. 28, 661-665. Dochain, D., Vanrolleghem, P.A., Van Daele, M., 1995. Structural identifiability of biokinetic models of activated sludge respiration. Water Res. 29, 2571-2578. Draper, N.R., Smith, H., 1981. Applied regression analysis. 2nd Ed., John Wiley & sons, New York. Duetz, W.A., Wind, B., van Andel, J.G.., Barnes, M.R., Williams, P.A., Rutgers, M., 1998. Biodegradation kinetics of toluene, m-xylene, p-xylene and their intermediates through the upper TOL pathway in Pseudomonas putida (pWW0). Microbiology, 144, 1669-1675. El-Farhan, Y.H., Scow, K.M., Fan, S., Rolston, D.E., 2000. Kinetics of trichloroethylene cometabolism and toluene biodegradation: Model application to soil batch experiments. J. Environ. Qual. 29, 778-786. Ellis, T.G., Barbeau, D.S., Smets, B.F., Grady Jr., C.P.L., 1996. Respirometric technique for determination of extant kinetic parameters describing biodegradation. Water Environ. Res. 68, 917-926. Goudar, C.T., Ganji, S.H., Pujar, B.G., Strevett, K.A., 2000. Substrate inhibition kinetics of phenol biodegradation. Water Environ. Res. 72, 50-55. Hack, C.J., Woodley, J.M., Lilly, M.D., Liddell, J.M., 2000. Design of a control system for biotransformation of toxic substrates: toluene hydroxylation by Pseudomonas putida UV4. Enz. Microb. Technol. 26, 530-536. Heald, S., Jenkins, R.O., 1994. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl. Environ. Microbiol. 60, 4634-4637. Hill, G.A., Robinson, C.W., 1975. Substrate inhibition kinetics: phenol degradation by Pseudomonas putida. Biotechnol. Bioeng. 17, 1599-1615. Hinteregger, C., Streichsbier, F., 1997. Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic wastewater. Biotechnol. Lett. 19, 1099-1102. Holmberg, A., 1982. On practical identifiability of microbial growth models incorporating Michaelis-Menren type nonlinearities. Math. Biosci. 62, 23-43. Homoda, M.F., Al-Attar, I.M.S., 1995. Effects of high sodium chloride concentrations on activated sludge treatment. Wat. Sci. Tech. 31, 61-72. Ingram, M., 1940. The influence of sodium chloride and temperature on the endogenous respiration of Bacillus circus. J. Gen. Physiol. 23, 773-778. Jung, I.G., Park, O.H., 2005. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration. J. Biosci. Bioeng. 100, 657-661. Kargi, F., Dincer, A.R., 1996, Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation. Enzyme Microb. Technol. 19, 529-537. Kargi, F., Dincer, A.R., 1999. Salt inhibition effects in biological treatment of saline wastewater in RBC. J. Environ. Eng. ASCE 125, 966-971. Kargi, F., Uygur, A., 1996. Biological treatment of saline wastewater in an aerated percolator unit utilizing Halophilic Bacteria. Environ. Technol. 17, 325-330. Kelly, W.R., Hornberger, G.M., Herman, J.S., Mills, A.L., 1996. Kinetics of BTX biodegradation and mineralization in batch and column systems. J. Contam. Hydrol. 23, 113-132. Kelly, C.J., Bienkowski, P.R., Sayler, G.S., 2000. Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism. Biotechnol. Bioeng. 69, 256-265. Kesavan, P., Law, V.J., 2005. Practical identifiability of parameters in Monod kinetics and statistical analysis of residuals. Biochem. Eng. J. 24, 95-104. Kincannon, D.F., Guady, A.F., 1968. Response of biological waste treatment system to changes in salt concentrations. J. Biotechnol. Bioengrg.10, 483-496. Kotturi, G., Robinson, C.W., Inniss, W.E., 1991. Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl. Microbiol. Biotechnol. 34, 539-543. Lai, M.C., Sowers, K.R., Robertson, D.E., Roberts, M.F., Gunsalus, R.P., 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173, 5352-5358. Landa, A.S., Sipkema, E.M., Weijma, J., Beenackers, A.A.C.M., Dolfing, J., Janssen, D.B., 1994. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat wirh toluene as the primary substrate. Appl. Environ. Microbiol. 60, 3368-3374. Lau, P.C.K., Bergeron, H., Labbe, D., Wang, Y., Brousseau, R., Gibson D.T., 1994. Sequence and expression of the todGIH genes involved in the last three steps of toluene degradation by Pseudomonas putida F1. Gene 146,7-13. Lee, C.Y., Chan, Y.C., Lin, C.L., 2005. The effect of salinity on trichloroethylene co-metabolism by mixed cultures enriched on phenol. World J. Microbiol. Biotechnol. 21, 359-365. Lee, C.Y., Cheng, S.Z., 1998. Trichloroethylene biodegradation by phenol-oxidizing cultures grown from various conditions. J. Environ. Sci. Health B33, 705-721. Lee, C.Y., Lin, C.H., 2006. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress. J. Ind. Microbiol. Biotechnol. 33, 37-44. Lee, C.Y., Liu, W.D., 2000. The identifiability of kinetic parameters of trichloroethylene biodegradation by phenol-oxidizing cultures grown from various conditions. J. Environ. Sci. Health A35, 31-78. Lee, C.Y., Liu, W.D., 2006. The effect of salinity conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures. J. Haz. Mater. (in press). Li, S., Wackett, L., 1992. Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Commun. 185,443-451. Liu, W.D., Lee, C.Y., 2001. Kinetic analysis of inhibitory substrate degradation in bioaugmented activated sludge process. J. Environ. Sci. Health A36, 243-257. Ludzack, F. J., Noran, D. K., 1965. Tolerance of high sanilities by conventional wastewater treatment processes. J. Water Pollution Control Fed. 37, 1404-1416. Maliyekkal, S.M., Rene, E.R., Philip, L., Swaminathan, T., 2004. Performance of BTX degraders under substrate versatility conditions. J. Haz. Mater. B109, 201-211. Margesin, R., Schinner, F., 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73-83. Mars, A.E., Houwing, J., Dolfing, J., Janssen, D.B., 1996. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl. Environ. Microbiol. 62, 886-891. Mars, A.E., Prins, G.T., Wietzes, P., de Koning, W., Janssen, D.B., 1998. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria. Appl. Microbiol. Biotechnol. 64, 208-215. Marsili-Libelli, S., Guerrizio, S., Checchi, N., 2003. Confidence regions of estimated parameters for ecological systems. Ecol. Model. 165, 127-146. McCarty, P.L., Goltz, M.N., Hopkins, G..D., Dolan, M.E., Allan, J.P., Kawakami, B.T., Carrothers, T.J., 1998. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ. Sci. Technol. 32, 88-100. Mille, G., Almallah, M., Bianchi, M., van Wambeke, F., Bertrand, J.C., 1991. Effect of salinity on petroleum biodegradation. Fresenius J. Anal. Chem. 339, 788-791. Mirpuri, R., Jones, W., Bryers, J.D., 1997. Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G. Biotechnol. Bioeng. 53, 535-546. Monod, J., 1949. The growth of bacterial cultures. A. Rev. Microbiol. 3, 371-394. Nicholson, C.A., Fathepure, B.Z., 2005. Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol. Let. 245, 257-262. Oh, Y.S., Shareefdeen, Z., Baltzis, B.C., Bartha, R., 1994. Interaction between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnol. Bioeng. 44, 533-538. Onysko, K.A., Bidman, H.M., Robinson, C.W., 2000. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol. Bioeng. 70, 291-299. Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. 63, 334-348. Oren, A., 2002. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotehnol. 28, 56-63. Pawlowsky, U., Howell, J.A., 1973. Mixed culture biodegradation of phenol. I. determination of kinetic parameters. Biotechnol. Bioeng. 15, 889-896. Pedersen, A.R., Moller, S., Arvin, E., 1997. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment. Biotechnol. Bioeng. 54, 131-141. Peyton, B.M., Wilson, T., Yonge, D.R., 2002. Kinetics of phenol biodegradtion in high salt solutions. Wat. Res. 36, 4811-4820. Pirt, S.J., 1965. The maintenance energy of bacteria in growing cultures, Proc. R. Soc. London. 163B, 224-371. Pritchard D.J., Bacon, D.W., 1978. Prospects for reducing correlations among parameters in kinetic models. Chem. Eng. Sci. 33, 1539-1543. Reardon, K.F., Mosteller, D.C., Bull Rogers, J.D., 2000. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol. Bioeng. 69, 385-400. Reinhard, M., Goodman, N.L., Barker, J.F., 1984. Occurrence and distribution of organic chemicals in two landfill leachate plumes. Environ. Sci. Technol. 18, 953-961. Robinson, J.A., 1985. Determining microbial kinetic parameters using nonlinear regression analysis. Adv. Microb. Ecol. 8, 61-114. Robinson, J.A., Tiedje, J.M., 1983. Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Appl. Environ. Microbiol. 45, 1453-1458. Robinson, K.G., Pieters, J.G., Sanseverino, J., Cox, C.D., Wright, C.L., Cheng, C.L., Salyer, G.S., 1998. Microbial oxidation and bioluminescence response for toluene and trichloroethylene. Wat. Sci. Tech. 38, 1-8. Rozich, A.F., Gaudy, Jr. A.F., 1984. Critical point analysis for toxic waste treatment. J. Environ. Eng. ASCE. 110, 562-572. Saez, B.P., Rittmann, B.E., 1993. Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol). Biodegradation 4, 3-21. Schönduve, P., Sàra, M., Friedl, A., 1996. Influence of physiologically relevant parameters on biomass formation in a trickle-bed bioreactor used for waste gas cleaning. Appl. Microbiol. Biotechnol. 45, 286-292. Seagren, E.A., Kim, H., Smets, B.F., 2003. Identifiability and retrievability of unique parameters describing intrinsic Andrews kinetics. Appl. Microbiol. Biotechnol. 61, 314-322. Seker, S., Beyenal, H., Salih, B., Tanyolac, A., 1997. Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Appl.Microbiol. Biotechnol. 47, 610-614. Shingleton, J.T., Applegate, B.A., Baker, A.J., Sayler, G.S., Bienkowski, P.R., 2001. Quantification of toluene dioxygenase induction and kinetic modeling of TCE cometabolism by Pseudomonas putida TVA8. Biotechnol. Bioeng. 76, 341-350. Shurtliff, M.M., Parkin, G.F., Weathers, L.J., Gibson, G.T., 1996. Biotranfomation of trichloroethylene by a phenol-induced mixed culture. J. Environ. Engrg. 122, 581-589. Smith, L.H., Kitanidis, P.K., McCarty, P.L., 1997. Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture. Biotechnol. Bioeng. 53, 320-331. Sun, A.K., Wood, T.K., 1996. Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 45, 248-256. Tam, N.F.Y., Guo, C.L., Yau, W.Y., Wong, Y.S., 2002. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Mar. Pollut. Bull. 45, 316-324. van Duren, B.L., Banerfee, S., 1976. Covalent interaction of metabolites of the carcinogen trichloroethylene in rat heatic microsomes. Cancer Res. 36, 2419-2422. Vanrolleghem, P.A., Van Daele, M., Dochain, D., 1995. Practical identifiability of a biokinetic model of activated sludge respiration. Water Res. 29, 2561-2570. Versyck, K.J., Claes, J.E., Van Impe, J.F., 1997. Practical identification of unstructured growth kinetics by application of optimal experimental design. Biotechnol. Prog. 13, 524-531. Westrick, J.J., Mello, J.W., Rhomas, R.F., 1984. The groundwater supply survey. J. AWWA. 5, 52-59. Woolard, C.R., Irvine R.L., 1994. Biological treatment of hypersaline wastewater by a film of halophilic bacteria. Wat. Environ. Res. 66, 230-235. Woolard, C.R., Irvine R.L., 1995. Treatment of hypersaline wastewater in the sequencing batch reactor. Wat. Res. 29, 1159-1168. Yanase, H., ZuZan, K., Kita, K., Sogabe, S.,Kato, N, 1992. Degradation of phenol by thermophilic and halophilic bacteria isolated from a marine brine sample. J. Ferm. Bioeng. 74, 297-300. Yang, R.D., Humphrey, A.E., 1975. Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioeng. 17, 1211-1235. Yano, T., Koga, S., 1969. Dynamic behavior of the chemostat subject to substrate inhibition. Biotechnol. Bioeng. 11, 139-153.
|