跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭錦亮
研究生(外文):Chin-Liang Hsiao
論文名稱:具圓形核心的波導模態分析之研究
論文名稱(外文):Study on the Modal Analysis of Waveguide with a Circular Core
指導教授:曹登皓曹登皓引用關係
指導教授(外文):Deng-How Tsaur
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:193
中文關鍵詞:邊界選點法領域媒親法同心圓形核心偏心圓形核心波導
外文關鍵詞:boundary collocation methodregion-matching methodconcentric circular coreeccentric circular corewaveguide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去的參考文獻中,已有許多學者運用各種方法分析具圓形核心的波導,可是在大部分的研究結果中,其截止波數的精度大多只到小數點後三位,因此,本文利用簡易的邊界選點法和領域媒親法,分析Dirichlet和Neumann條件之具圓形核心的矩形和橢圓形波導,並針對圓形核心為同心或偏心的情況,探討不同佈點方式所求得之截止波數的收斂性。在邊界選點法的求解過程中,先求得四分之一計算領域的勢函數表示式,然後採用邊界選點法建構聯立方程式求得截止波數。在領域媒親法的求解過程中,先引入輔助邊界將四分之一計算領域分成兩個子領域,然後求得各子領域的勢函數表示式,接著利用座標轉換公式統一各子領域的座標系統,再配合選點法和連續邊界條件,建構聯立方程式求得截止波數。本文的所有計算結果皆與參考文獻或邊界元素法做比較,以驗證其正確性和可靠性。根據本文數值計算結果顯示:所有計算結果皆與邊界元素法的答案相吻合。使用邊界選點法和直線輔助邊界的領域媒親法求解同心圓形核心的矩形波導時,等間距佈點的收斂性會比等角度好。另外,對於同心圓形核心的橢圓形波導,使用等間距佈點的邊界選點法時,其所求得之截止波數的收斂性至少都有小數點後七位,而最高可達小數點後九位。
In previous studies, many scholars have used a variety of methods to analyze the waveguide with a circular core. However, in most calculated cases, the precision of the cutoff wavenumber was about 3 digits after the decimal point. Therefore, the main purpose of this thesis is to study the rectangular and elliptical waveguides with a circular core. Both the Dirichlet and Neumann boundary conditions are investigated by means of the simple boundary collocation and region-matching method. Concerning about the effects of the arrangement of the collocation points, the convergence of cut-off wavenumbers for the case of a concentric circular core and an eccentric one is discussed. Following the solution procedure of the boundary collocation method, the expression of the potential function for the quarter computational domain is obtained firstly. Placing the collocation points on the boundary to construct the simultaneous equations, the cut-off wavenumbers can then be determined. In region-matching method solution procedure, an auxiliary boundary is introduced to divide the computational domain into two sub-regions, and then the representation of the potential function for each sub-region is derived. Next, the local coordinate systems of each sub-region are unified by utilizing the coordinate transformation formulas. Applying the collocation method and continuity conditions, the cut-off wavenumbers can be gained from a linear algebra equation set. To verify the correctness and reliability of computational results in this thesis, all of them are compared with those of the boundary element method (BEM). It shows that the presented results and those of BEM are in good agreement with each other. When using the boundary collocation method and region-matching method with line auxiliary boundary to solve the rectangular waveguide with a concentric circular core, the convergence for equidistant points would be better than that for equiangular ones. Furthermore, when using the boundary collocation method with equidistant points to solve the elliptical waveguide with a concentric circular core, the desired precision of cut-off wavenumbers after the decimal point can at least converge to 7 digits and up to 9 digits.
中文摘要
英文摘要
目錄
表目錄
圖目錄

第一章 緒論
1 - 1 前言
1 - 2 文獻回顧
1 - 3 研究動機、目的及方法
1 - 4 研究內容與架構

第二章 具圓形核心的矩形波導
2 - 1 Dirichlet條件下圓形核心為同心之情況
2 - 1 - 1 邊界選點法
2 - 1 - 2 領域媒親法
2 - 2 Dirichlet條件的Meinke波導
2 - 3 Dirichlet條件下圓形核心為偏心之情況
2 - 4 Neumann條件下圓形核心為同心之情況
2 - 4 - 1 邊界選點法
2 - 4 - 2 領域媒親法
2 - 5 Neumann條件的Meinke波導
2 - 6 Neumann條件下圓形核心為偏心之情況

第三章 具圓形核心的橢圓形波導
3 - 1 Dirichlet條件下圓形核心為同心之情況
3 - 2 Dirichlet條件下圓形核心為偏心之情況
3 - 3 Neumann條件下圓形核心為同心之情況
3 - 4 Neumann條件下圓形核心為偏心之情況

第四章 數值計算例與討論
4 - 1 具圓形核心的矩形波導
4 - 1 - 1 同心的情況
4 - 1 - 2 Meinke波導
4 - 1 - 3 偏心的情況
4 - 2 具圓形核心的橢圓形波導
4 - 2 - 1 同心的情況
4 - 2 - 2 偏心的情況

第五章 結論

參考文獻

作者簡歷
1. Bates, R. H. T. and F. L. Ng (1973) "Point matching computation of transverse resonances, " International Journal for Numerical Methods in Engineering, Vol. 6, pp. 155-168.

2. Buchanan, G. R. and J. Peddieson (2005) "A finite element in elliptic coordinates with application to membrane vibration," Thin-walled Structures, Vol. 43, pp. 1444-1454.

3. Bulley, R. M. and J. B. Davies (1969) "Computation of approximate polynomial solutions to TE modes in an arbitrarily shaped waveguide," IEEE Trans. Microwave Theory and Techniques, Vol. 17, No. 8, pp. 440-446.

4. Hong, K. and J. Kim (1995) "Natural mode analysis of hollow and annular elliptical cylindrical cavities," Journal of Sound and Vibration, Vol. 183, No. 2, pp. 327-351.

5. Laura, P. A. A., R. H. butierrez, K. Nagaya, G. S. Sarmieuto and S. T. D. Santos (1981) "Vibration of a rectangular membrane with an eccentric inner circular boundary: a comparison of approximiate methods," Journal of Sound and Vibration, Vol. 75, No. 1, pp. 109-115.

6. Laura, P. A. A,, R. H. Gutihrrez and E. Romanelli, (2001) "Transverse vibration of a thin elliptical plate with a concentric, circular free edge hole," Journal of Sound and Vibration, Vol. 246, No. 4, pp. 737-740.

7. Meinke, H. H., K. P. Lange and J. F. Ruger (1963) "TE and TM-waves in waveguides of very general cross section," Proceedings of the IEEE, pp. 1436-1443.

8. Omar, A. S. and K. F. Schunemman (1991) " Application of the generalized spectral-Domain technique to the analysis of rectangular waveguides with rectangular and circular metal inserts, " IIEEE Trans. Microwave Theory and
Techniques, Vol. 39, No. 6, pp. 944952.

9. Ozkul, A. G. and Y. Chen (1976) " The vibration of an elliptic ring membrane, " Journal of Applied Mechanics, pp. 692-694.

10. Roumeliotis, J. A. and Stylianos P. Savaidis (1994) "Cutoff frequencies of eccentric circular-elliptic metallic waveguides," IEEE Trans. Microwave Theory
and Techniques, Vol. 42, No. 11, pp. 2128-2138.

11. Wang, H., K. L. Wu, and J.Litva (1997) "The higher order modal characteristics of circular-rectangular coaxial waveguides," IEEE Trans. Microwave Theory and Techniques, Vol. 45, No. 3, pp. 414-419.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top