跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余菀婷
研究生(外文):Wan-Ting Yu
論文名稱:操作條件對微生物燃料電池性能之影響
論文名稱(外文):Operational conditions affecting the performance of microbial fuel cell
指導教授:李志源李志源引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:94
中文關鍵詞:微生物燃料電池外電阻曝氣量水力停留時間
外文關鍵詞:microbial fuel cellexternal resistanceaeration rateHRT
相關次數:
  • 被引用被引用:7
  • 點閱點閱:621
  • 評分評分:
  • 下載下載:170
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本研究操作兩組連續流式雙槽微生物燃料電池(Microbial Fuel Cell, MFC),分別以人工合成葡萄糖液及碧砂魚市污水廠之污水為陽極燃料,陰極則以磷酸鹽為緩衝液、氯化鈉為電解質。探討外電阻、陰極曝氣量及水力停留時間對MFC性能(功率密度、庫侖效率、COD去除率)的影響。在外部電阻試程中,兩組MFC所產生的庫侖效率隨著外電阻增加而減少,COD去除率沒有明顯的變化,功率密度沒有相關性。當陰極曝氣量從0增加到2.25 min-1時,兩組MFC之功率密度、庫侖效率則隨之增加,對COD去除率沒有太大的影響。水力停留時間試驗中,這兩組MFC的COD去除率和庫侖效率會隨著水力停留時間的延長有增加的趨勢,功率密度則反之。利用本試驗所研製之MFC,當用於處理污水時,COD去除率58~90 %,已達到目前污水處理之效率,但產電能力較差,最大功率輸出在5 mW/m2以下,葡萄糖MFC之最大輸出功率雖可達32.9 mW/m2,但庫侖效率與燃料利用率仍不高。以目前所探討之操作條件很難大幅提高MFC之產電潛能,未來應往電極材料、微生物控制與電池結構研究改進。




關鍵字:微生物燃料電池、外電阻、曝氣量、水力停留時間
Abstract
Two microbial fuel cells (MFCs) discharged with continuous fuel were operated in this study. In each MFC, phosphate solution was used as buffer in the cathodes and domestic wastewater and glucose solution were used as fuel. MFC performances of power density, coulombic yield and COD removal were examined as functions of operational conditions, involving external resistance, aeration rate in the cathode and hydraulic retention time (HRT). Results show that when external resistance increase from 10 to 10 k Ω, coulombic yield decreased as the external resistance increased. However, the COD removal efficiency and power density was found to be unrelated to external resistance. When the aeration rate in cathode increased from 0 to 2.25 min-1, the coulombic yield and power density increased with increasing aeratin rate. Nevertheless, the COD removal invaried when aeration rate increased. As HRT increased from 0.25 to 2 days, COD removal and coulombic yield increased and power density decreased. The MFCs used in this study achieved high COD removal (58- 90 %) in wastewater treatment, but the power density was limited to 5 mW/m2. In the glucose MFC, the maximum of power output reached 32.9 mW/m2 but with low coulombic yield and fuel consumption efficiencies under current testing conditions, the power density of MFC is difficult to greatly improve. Future research should be conducted on the improvement of electrode materials, microbial selection and structure of the fuel cell.

Key word: microbial fuel cell, external resistance, aeration rate, HRT
目錄
摘要………………………………………………………………………….I
Abstract………………………………………………………………….....II
目錄………………………………………………………………..……... III
表目錄…………………………………………………………………........V
圖目錄……………………………………………………………….….. ..VI
第一章 前言……………………………………………….….….….…….1
1.1研究目的……………………………………………….…………..1
1.2研究內容……………………………………………….…………..1
第二章 文獻回顧…………………………………………….…………....3
2.1微生物燃料電池的沿革………………………………...……..…..3
2.2微生物燃料電池的機制……………………………….…………..3
2.3影響微生物燃料電池性能之因素…………………….……...…...6
2.3.1外電阻…………………………………………………….…...6
2.3.2內電阻………………...…..………………….…………..……8
2.3.3曝氣量……………………………………….………………...9
2.3.4水力停留時間………………….…………………….……....10
2.3.5電極材料…….……………………………………….…..…..12
2.3.6電極間距離………………………………………….….……13
2.3.7氧化還原電位…………………………...........….….…….…13
第三章 材料與方法……………………………………………...…...….15
3.1實驗規劃………........……………………………………....……15
3.2實驗材料與設備…………………….……………………....……19
3.2.1微生物燃料電池….………..……………..…………….……19
3.3.2操作內容….……………………..…………………….....…. 21
3.3分析方法與儀器設備…...…………………………………....…..22
3.3.1電能分析….…………………………………………..….…..22
3.3.2水質分析….……………………………………….……..…..24
3.3.3儀器分析…………………………………………………......29
3.3.4分析儀器設備……………………………………….…….....30
3.3.5各項水質分析之檢量線…………………………….……….32
第四章 結果與討論………………………...……………….….………..36
4.1外部電阻對MFC系統的影響………..…….…………….…..….36
4.1.1葡萄糖為燃料……………………………..……………..…..37
4.1.2污水為燃料…………………………………..…………..…..43
4.1.3討論…...…………………………………………….…....…..49
4.2曝氣量對MFC系統的影響………………………..……...…..…57
4.2.1葡萄糖為燃料…………………………………...…….……..57
4.2.2污水為燃料…………………………….………...…….…….61
4.2.3討論….………………………….………………….…….…..64
4.3水力停留時間對MFC 的影響…………..……..….……….……75
4.3.1葡萄糖為燃料………………………………….………..…...75
4.3.2污水為燃料….……………………….………………….…...78
4.3.3討論…………………………………………….……….……81
第五章 結論與建議…………………….………….……………….……88
第六章 參考文獻…………………………………….……………..……90



表目錄
表2.1比較各文獻有關水力停留時間與MFC性能關係….…..………....11
表2.2比較各文獻之電極材料變化與MFC性能之關係.….....………….12
表2.3各種氧化還原反應之電動勢…………………….……….…...…...14
表3.1第一部份操作參數表……………………………….….…………..17
表3.2第二部分操作參數表……………………………….……...………17
表3.3第三部分操作參數表……………………………….……...………18
表4.1碧砂漁港魚貨中心之污水廠初沉池基本水質特性.….....………..36
表4.2以葡萄糖為燃料在各外電阻試程之數據……….…….….….……42
表4.3以污水為燃料在各外電阻試程之數據…………….…….….…….48
表4.4以葡萄糖為燃料於不同外部電阻之結果與文獻報告相比………51
表4.5以污水為燃料於不同外部電阻之結果與文獻報告相比…............53
表4.6以葡萄糖為燃料在各曝氣量試程之數據…………………..……..60
表4.7以污水為燃料在各曝氣量試程之數據…………………..………..63
表4.8以葡萄糖為燃料於不同曝氣量之結果與文獻報告相比…..……..66
表4.9以污水為燃料於不同曝氣量之結果與文獻報告相比….…...........68
表4.10以葡萄糖為燃料在不同水力停留時間試程之數據………..……77
表4.11以污水為燃料於不同水力停留時間試程之數據……….……….80
表4.12以葡萄糖為燃料於水力停留時間之結果與文獻報告相比……..82
表4.13以污水為燃料於水力停留時間之結果與文獻報告相比….…….84




圖目錄
圖2.1微生物燃料電池之示意圖……………………………………..……5
圖3.1實驗規劃圖……………………………………………….………...16
圖3.2反應槽構造………………………………….……………………...20
圖3.3微生物燃料電池之示意圖…………………….…………………...21圖4.1以葡萄糖為燃料於外電阻500歐姆之電壓變化圖……….….…...37
圖4.2以葡萄糖為燃料於外電阻500歐姆之COD進、出流的變化圖..38
圖4.3以葡萄糖為燃料於外電阻10 k歐姆之電壓變化圖………….…...39
圖4.4以葡萄糖為燃料於外電阻10 k歐姆之COD進、出流的變化圖..39
圖4.5以葡萄糖為燃料於外電阻10歐姆之電壓變化圖………….…….40
圖4.6以葡萄糖為燃料於外電阻10 歐姆之COD進、出流的變化圖….41
圖4.7以污水為燃料於外電阻10 k歐姆之電壓變化圖…………………43
圖4.8以污水為燃料於外電阻10 k歐姆之COD進、出流的變化圖…….44圖4.9以污水為燃料於外電阻500歐姆之電壓變化圖……….……........45圖4.10以污水為燃料於外電阻500歐姆之COD進、出流的變化...........45
圖4.11以污水為燃料於外電阻10歐姆之電壓變化圖………………….46
圖4.12以污水為燃料於外電阻10歐姆之COD進、出流的變化圖......47圖4.13以葡萄糖為燃料於各外電阻其庫侖效率、COD去除率以及功
率密度之關係圖……………………………………………...….50
圖4.14以污水為燃料於各外電阻其庫侖效率、COD去除率以及
功率密度之關係圖……..………..………..………………….….52
圖4.15以葡萄糖為燃料於各外電阻之極化曲線-功率密度比較圖…….55
圖4.16以葡萄糖為燃料於各外電阻之極化曲線-電壓比較圖………….55
圖4.17以污水為燃料於各外電阻之極化曲線-功率密度比較圖……….56
圖4.18以污水為燃料於各外電阻之極化曲線-電壓比較圖………….....56
圖4.19以葡萄糖為燃料於各種曝氣量下之電壓變化圖………….…….57
圖4.20以葡萄糖為燃料於各種曝氣量下之COD進、出流變化圖……58
圖4.21以污水為燃料於各種曝氣量下之電壓變化圖………….……….61
圖4.22以污水為燃料於各種曝氣量下之COD進、出流變化圖………62
圖4.23以葡萄糖為燃料於各曝氣量其庫侖效率、COD去除率以及功
率密度之關係圖…………………………………………………..65
圖4.24以污水為燃料於各曝氣量其庫侖效率、COD去除率以及功率
密度之關係圖……………………………………………………..67
圖4.25以葡萄糖為燃料於各曝氣量之極化曲線-功率密度比較圖...…..70
圖4.26以葡萄糖為燃料於各曝氣量之極化曲線-電壓比較圖….........…70
圖4.27以污水為燃料於各曝氣量之極化曲線-功率密度比較圖…...…..71
圖4.28以污水為燃料於各曝氣量之極化曲線-電壓比較圖………..…...71
圖4.29以葡萄糖為燃料,當不曝氣時MFC陰極溶氧與ORP的變化
圖…………………………………………………………………..74
圖4.30以污水為燃料,當不曝氣時MFC陰極溶氧與ORP的變化
圖…………………………………………………………………..74
圖4.31以葡萄糖MFC 於各水力停留時間之電壓變圖…………………75
圖4.32以葡萄糖MFC 於各水力停留時間之COD進、出流變化圖….76
圖4.33以污水MFC 於各水力停留時間之電壓變化圖……..…………..78圖4.34以污水為燃料於不同HRT之COD進、出流變化圖….……….79
圖4.35以葡萄糖為燃料於HRT試程中其庫侖效率、COD去除率及功
率密度之關係圖…………………………………………………81
圖4.36以污水為燃料於HRT試程中其庫侖效率、COD去除率及功率
密度之關係圖………………………………………………..…..83
圖4.37以葡萄糖為燃料於改變HRT試程中之極化曲線-功率密度
比較圖……………………………………………………………86
圖4.38以葡萄糖為燃料於改變HRT試程中之極化曲線-電壓比較圖..86
圖4.39以污水為燃料於改變HRT試程中之極化曲線-功率密度
比較圖……………………………………………..……….…….87
圖4.40以污水為燃料於改變HRT試程中之極化曲線-電壓比較圖…..87
行政院環保署資訊站(網址: http://www.epa.gov.tw)
經濟部國家標準檢驗局(網址: http://www.bsmi.gov.tw)
蔡佳蓉, 2003. 迴流式連續攪拌混合反應槽系統之厭氧產氫.逢甲大
學(土木及水利工程所)
Bennetto, H. P., 1990. Electricity generation by microorganisms.
Biotechnology Education, 1(4), 163-168.
Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., and
Kim, B. H., 2004. Contiunous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron., 19, 607-613.
Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S. and Kim, H. J., 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron., 18, 327-324.
Guiot, S. R., and Tartakovsky, B., 2006. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol. Prog., 22, 241-246.
Habermann, W., Pommer, and E. H., 1991. Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol., 35, 128 -133.
He, Z., Minteer, S. D., and Angenent, L. T., 2005. Electricity generated from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol., 39, 5262-5267.
Hernandez, M. E. and Newman, D. K., 2001. Extracellular electron
transfer. Cell. Mol. Life. Sci. 58, 1562-1571.
Ieropoulos, I., Greenman, J., Melhuish, C., and Hart, J., 2005. Energy
accumulation and improved performance in microbial fuel cells.
J. Power Sources., 145(2), 253-256.
Ieropoulos, I. A., Greenman, J., Melhuish, C. and John., 2005.
Comparative study of three types of microbial fuel cell. Enzyme Microb. Technol., 37, 238-245.
Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho,K. S. and Kim, B. H., 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem., 39, 1007-1012.
Kang, K. H., Jang, J. K., Pham, T. H., Moon, H., Chang, I. S. and Kim,
B. H., 2003. A microbial fuel cell with improved cathode reaction as a
low biochemical oxygen demand sensor. Biotechnol. Lett., 255,
1357-1361.
Karube, I., Matsunga, T., Mitsuda, S., and Suzuki, S., 1997. Microbial
electrode BOD sensors. Biotechnol. Bioeng., 19, 1535-1547.
Kim, B. H. Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J. and
Phung, N. T., 2004. Enrichment of microbial community generating
electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol.
Biotechnol. , 63, 672-681.
Kim, J. R., Min, B., and Logan, B. E., 2005. Evaluation of procedures to acclimate a microbial fuel cell for elecricity production. Appl. Microbiol. Biotechnol., 68, 23-30.
Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., and Kim, H. J.,2003. Novel
BOD sensor using mediator-less microbial fuel cell. Biotechnol. Lett.
25, 541-545.
Kim, B.H., 1999a. Microbial fuel cell using wastewater as fuel. In:
Proceedings of the 99th General meeting of the Ameeerican Society
for Microbiology, Chicago, (abstract Book). 586.
Liu, H., Cheng, S., and Logan, B. E., 2005. Power generation in fed-batch
microbial fuel cells as a function of ionic strength, temperture,and
reactor configuration. Environ. Sci. Technol., 39, 5488-5493.
Liu, H. and Logan, B. E., 2004. Electricity generation using
air-cathode single chamber microbial fuel cell in the presence and
absence of a proton exchange membrane. Environ. Sci .Technol., 38,
4040-4046.
Liu, H., Cheng, C. and Logan, B. E., 2005. Production of electricity
from acetate or butyrate using a single-chamber microbial fuel cell.
Environ. Sci. Technol., 39, 658-662.
Liu, H., Ramnarauamam, R., and Logan B. E., 2004. Production of
electricity during wastewater treatment using a single chamber
microbial fuel cell. Environ. Sci. Technol., 38, 2281-2285.
Maduraju, K., 2004. The microbial fuel cell : electricity production
using yeast and anaerobic sludge as electron mediators in a
conventional MFC and an MDC built with recyclable materials.
Bioelectricity, 28, 1-9.
Menicuccu, J., Beyenal, H., Marsili, E., Veluchamy, R. A., Dersel, D., and
Lewandowski Z., 2006. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ. Sci. Technol., 40, 1062-1068.
Min, B., and Logan, B. E., 2004. Continuous electricity generation from
domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38, 5809-2814.
Min, B., Chang, S. and Logan, B. E., 2005. Electricity generation using
membrane and salt bridge MFC. Water Res., 1675-1686.
Moon, H., Chang, I. S., Jang, J. K., and Kim, B. H., 2005. Residence time
distrbution in microbial fuel cell and its influence on COD removal
with electricity generation. Biochem. Eng. J. , 27, 59-65.
Moon, H., Chang, I. S., and Kim, B. H., 2006. Continuous electricity
production from artificial wastewater using a mediator-less microbial
fuel cell. Bioresour. Technol., 97(4), 621-627.
Nevin, K. P. and Lovely, D. R., 2002. Mechanisms for accessing
insoluble Fe(III) reduction by Geothrix fermentans. Appl. Environ.
Microbiol., 68, 2294-2299.
Niessen, J., Schroder, U., and Scholz, F., 2004. Exploiting complex
carbohydrates for microbial electricity generation – a bacterial fuel
cell opeerating on starch. Electrochem. Commun., 6, 955-958.
Park, D. H. and Zeikus, J. G., 2002. Improved fuel cell and electrode
designs for producing electricity from microbial degradation.
Biotechnol. Bioeng., 81, 3, 348-355.
Park, D. H. and Zeikus, J. G., 2003. Impact of electrode composition on
electricity generation in a single-compartment fuel cell using
Shewanella putrefaciens. Appl. Microbial. Biotechnol., 59, 58-60.
Rabaey, K. and Verstraete, W., 2005. Microbial fuel cells : novel
biotechnology for energy generation. Trends Biotechnol., 6, 23,
291-298.
Rabaey, K. Boon, N. Siciliano, S. D., Verhaege, and M. Verstraete, W., 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 70, 5373-5382.
Rabaey, K., Lissens, G., Sicilano, and S., Verstraete, W., 2003. A microbial
fuel cell capable of converting glucose to electricity at high rate and
efficiency. Biotechnol. Lett., 25(18), 1531-1535.
Reynolds, T. D., Unit operations and processes in environmental
engineering. 349-358.
Schroder, U., Niben, J. and Scholz, F., 2003. A generation of
microbial fuel cells with current outputs boosted by more than one
order of magnitude. Angew. Chem.-Int. Edit., 42, 2880-2883.
Shukla, A. K., Suresh, P., Berchmans, S. and Rajendran, A., 2004.
Biological fuel cells and their applications. Curr. Sci., 87, 4,
455-468
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊