跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁穫評
研究生(外文):Huo-Ping Weng
論文名稱:近岸海床軟弱沉泥剪力強度與拋石沉陷之研究
論文名稱(外文):The Shear Stress and Mound Settlement of Nearshore Soft Marine Silts
指導教授:簡連貴簡連貴引用關係
指導教授(外文):Lien-Kwei Chien
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:132
中文關鍵詞:沉泥剪力強度拋石沉陷海床軟弱沉泥
外文關鍵詞:Marine clay siltsettlement of moundshear stress of clay silt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
由於海床軟弱沉泥工程性質較難掌控,經常為海岸及港灣工程災變的主因,有鑒於馬祖福澳商港碼頭擴建工程,在進行拋石防波堤擴建時,由於低估海床軟弱沉泥的厚度與工程強度特性,而導致拋石不斷沉陷以致拋石量嚴重不足,進而使工程延宕等問題。因此,確實掌控海床軟弱沉泥之厚度、分布範圍及其力學特性,為近岸結構物安全穩定的關鍵問題。
為能有效的實際了解軟弱海床沉泥之基本物理性質及其力學性質,經由現地架設海上鑽探平台,取得不擾動土樣以進行土壤室內試驗。為使薄管所受擾動降至最低,將鑽探取得之薄管以冷凍法保存,再進行土壤室內試驗。同時於鑽探現場進行簡易型十字片剪試驗,以求取土壤之不排水剪力強度。本研究另採用沉降法進行重模以模擬海床土壤,同時以簡易型十字片剪求取不排水剪力強度,以評估實驗室與現地之不排水剪力強度之關聯性,以作為無法順利取樣之極軟弱海床沉泥時,推求其力學行為之依據參考。
本研究另採用監造單位所提供之現地實際拋石量,利用外差及回歸法進行推求預定完成防波堤里程所需之拋石量,同時結合數值程式Geo-Slope模擬現地拋石沉陷情形,並利用拋石沉陷量反推拋石量。
本研究根據室內試驗結果與分析,可判定現地海床土壤符合軟弱地盤之定義。且經由現地實際拋石量推估結果,設計實體拋石量均與現地實際拋石量所推估之拋石量,相差約1.9~2.1倍之間。另利用已拋石構築完成之防波堤里程,鑽探所得之堤心石可驗證本研究所建立之數值模式之正確性,故利用數值模式所推估結果,可作為相關單位後續施工之拋石量設計依據。
Due to the characteristic of soft marine clay silt is difficult to evaluate and control, it’s often a main reason of the coast and harbor engineer disaster. Because of thickness of extra soft marine clay and silt, and the properties of engineering strength are underestimated, the mound stone is sinking into seabed constantly so that the amount of breakwater mound is being insufficient seriously at the quay extension project of Fuao commercial port in Matsu county. Therefore, how to take control of the thickness distribution and mechanic behavior of soft marine clay silt is the key problem of the safety and stability of near shore structure.
In order to deep understanding the basic physic properties and mechanic behavior of soft marine soil, the undisturbed soil are obtained by maritime drilling platform in-situ and the related test were performed in the laboratory. Freeze the thin tube was adopted to diminish the disturbance of thin tube. And the simple of vane shear test was also performed to obtain the undrained shear stress during penetration drilling. This research adopts a method in laboratory to simulate the sea bed soil. And also using vane shear method obtained the undrained shear stress of marine clay slit to assess the correlation of undrained shear stress between laboratory and in-situ marine clay silt. It would be the references to inquire the mechanics behavior of marine clay silt, which can not be obtained successfully.
This study adopts extrapolation and regression method to evaluate the total mound need of breakwater base on the real mound count which provide by supervisor. On the other hand, combined with Geo-Slope program to simulate the settlement of marine clay silt, and also conjecture amount of mound by back analysis. According to the results and analysis of experiment, it can determine that seabed marine clay silt fit in with the definition of soft ground. By the result of real mound count, the designed mound count are less than the real mound count about 1.9~2.1 times. And by use of the penetration information of constructed breakwater, it could be verified the model is reliable established by this study. It is very useful and could be provided the estimated mound for related agency.
謝 誌 II
摘 要 III
ABSTRACT IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 4
1.4 研究方法 5
1.5 論文架構 6
第二章 文獻回顧 9
2.1 黏土礦物及土壤結構 9
2.1.1 黏土礦物定義與性質 9
2.1.2 黏土結構與組織 12
2.1.3 黏土礦物表面電荷 13
2.1.4 黏土微觀組構 14
2.1.5 小結 14
2.2 黏土剪力強度評估之回顧 15
2.2.1 黏土剪力強度定義 15
2.2.2 正規化行為與異向性之影響 16
2.2.3 試驗室剪力強度試驗之影響 17
2.2.4 真實應力狀態之研究 19
2.2.5 土壤試體擾動之影響 19
2.2.6 小結 21
2.3 土壤之壓密理論及沉陷量估算 22
2.3.1 Terzaghi壓密理論及相關研究 23
2.3.2 Biot三維壓密及相關研究 27
2.3.3 沉陷量估算 30
2.3.4 小結 33
2.4 軟弱地質之定義與判定準則 34
2.4.1 軟弱地盤之定義 34
2.4.2 軟弱地質之判定標準 35
2.4.3 各國之軟弱地質判定標準 38
2.5 凝聚性土壤三軸試驗之速率 39
2.5.1 K0壓密速率 39
2.5.2 受剪速率 40
2.6 基礎承載與穩定評估分析 41
2.6.1 基礎破壞型式 42
2.6.2 基礎極限承載力 43
2.6.3 基礎穩定分析 45
2.6.4 結構物應力分佈 47
2.6.5 小結 48
2.7 本研究定位與特色 49
第三章 研究區域背景與試驗規劃 50
3.1 研究區址背景介紹 50
3.2 土樣來源 52
3.3 室內試驗規劃 56
3.3.1 基本物理性質試驗 56
3.3.2 力學性質試驗 56
3.3.3 試驗組數與條件 58
第四章 試驗設備及方法 59
4.1 土壤基本物理性質 59
4.2 土壤試體準備 59
4.2.1 重模試體準備儀器系統 59
4.2.2 試體準備步驟 61
4.3 力學性質試驗 63
4.3.1 單向度壓密試驗 63
4.3.2 三軸試驗 64
4.3.3 Torvane(袖珍型十字片剪試驗儀) 66
第五章 海床沉泥試驗結果分析與探討 67
5.1 海上鑽探不擾動土樣試驗結果 67
5.1.1 基本物理性質試驗 67
5.1.2 力學性質試驗 70
5.2 重模海床軟弱沉泥土樣之試驗結果 87
5.2.1 重模條件 87
5.2.2 試驗結果分析 87
5.3 小結 90
第六章 海床軟弱沉泥拋石量推估及沉陷分析 92
6.1 海床軟弱沉泥拋石量推估 92
6.1.1 現地拋石量推估 92
6.1.2 防波堤堤心鑽探取樣結果推估 94
6.1.3 防波堤拋石損耗率及評估 96
6.2 海床軟弱沉泥拋石量推估 98
6.2.1 數值模式之建置及參數選用 99
6.3 沉陷數值分析結果與現地拋石量之分析比較 108
6.3.1 不同土層厚度之拋石沉陷量 108
6.3.2 數值模擬推估拋石沉陷損耗率 110
6.4 小結 114
第七章 結論與建議 116
7.1 結論 116
7.2 建議 119
參考文獻 121
附錄一 動力三軸系統介紹與校正方法 128
Ⅰ.1 動力三軸試驗設備 128
Ⅱ.2 儀器之校正(CALIBRATION OUTLINE) 132
1.Atkinson, J. H., M. A. Allman, and R. J. Boese, 1992,“Influence of Laboratory Sample Preparation Procedures on the Strength and Stiffness of Intact Bothkennar Soil Recovered Using the Laval Sampler”, Geotechnique, Vol.42, No.2, pp.349-354.
2.Baligh, M. M., A. S. Azzouz, and C. T. Chin, 1987,“Disturbance due to Ideal Tube Sampling”, Journal of Geotechnical Engineering, ASCE, Vol.113, No.7, pp.739-757.
3.Bear, J., and M. Y. Corapcioglu, 1984,“Fundamentals of Transport Phenomena in Porous Media”, NATO ASI Series, Martinus Nijhoff Publishers.
4.Biot, M. A., 1941b,“Consolidation Settlement under a Rectangular Load Distribution”, Journal of Applied Physics, Vol.12, pp.426-430.
5.Biot, M. A., and F. M. Clingan, 1941, “Consolidation Settlement of a Soil with an Impervious Top Surface”, Journal of Applied Physics, Vol.12, pp.578-581.
6.Biot, M. A., 1955,“Theory of Elasticity and Consolidation for a Porous Anisotropic Solid”, Journal of Applied Physics, Vol.26, No.2, pp.182-185.
7.Biot, M. A., 1956,“General Solutions of the Equations of Elasticity and Consolidation for a Porous Materia”, J. Appl. Mech., Trans. ASME, Vol.78, pp.91-96.
8.Biot, M. A., and D. G. Willis, 1957,“The elastic coefficients of the theory of consolidation”, J. Appl. Mech., Trans. ASME, Vol.79, pp.594-601.
9.Bishop, A. W., and L. Bjerrum, 1960,“The Relevance of the Triaxial Test to the Solution of Stability Problems”, Proc. ASCE Research Conf. on Shear Strength of Cohesive Soils, Boulder, Col., pp.437-501.
10.Bjerrum, L., 1973,“Problems of Soil Mechanics and Construction on Soft Clay:SOA Report”, Proc. 8th Int. Conf. on soil Mech. And Found. Eng, Moscow, U.S.S.R., Vol.3, pp.111-159.
11.Boussinesq, J., 1885,“Application des Potentiels à L’Étude de L’Équilibre et due Mouvement des Solides Élastiques”, Gauthier-Villars, Paris.
12.Bowles, J. E., 1987,“Elastic Foundation Settlement on Sand Deposit”, Journal of Geotechnical Engineering Division, ASCE, Vol.113, No.8, pp.846-860.
13.Buisman, A. S. K., 1936,“Results of Long Duration Settlement Tests”, Proc. 1st Inter. Conf. Soil Mech. Found. Eng.(Cambridge), Vol.1, pp.103-105.
14.Burcharth, H. F., and P. Frgaard, 1987,“On the Stability of Berm Breakwater Roundheads and Trunk Erosion in Oblique Waves”, Seminar on Unconventional Rubble-Mound Breakwater, Ottawa.
15.Casagrande, A., 1936,“The Determination of The Preconsolidation Load and Its Practical Significance”, Discussion D-34, Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Vol.3, pp.60-64.
16.Casagrande, A., and P. C. Rutledge, 1947,“Cooperative Triaxial Shear Research”, Waterways Experiment Station, Vicksburg, MS.
17.Casagrande, A., 1948,“Classification and Identification of Soils”, Transactions, ASCE, Vol.113, pp.901-930.
18.Christian, J. T., 1977,“Two- and Three-Dimensional Consolidation”, in C. S. Desai and J. T. Christian(ed), Numerical Methods in Geotechnical Engineering, Mcgraw-hill, pp.399-426.
19.Chai, J. C, S. Sakajo, and N. Miura, 1994,“Stability Analysis of Embankment on Soft Ground(A Case Study)”, Soils and Foundations, Vol.34, No.2, pp.107-114.
20.Collins, K., and A. McGown, 1974,“The Form and Function of Microfabric Features in a Variety of Natural Soils”, Geotechnique, Vol.XXIV, No.2 ,pp.223-254.
21.Cowley, B. K., E. G. Haggar, and W. J. Larnach, 1975,“A Comparison between the Observed and Estimated Settlements of Three Large Cold Stores in Grimsby”, Conference on Settlement of Structures, British Geotechnical Society, pp.79-90.
22.Crank, J., and P. Nicholson, 1947,“A Practical Method for Numerical Evaluation and Solution of Partial Differential Equation of the Heat-Condition Type”, Proc. Camb. Phil. Soc., Vol.43, pp.50-57.
23.Davis, E. H., and H. G. Poulous, 1972,“Rate of Settlement under Two- and Three-Dimensional Consolidations”, Geotechnique, Vol.12, No.1, pp.95-114.
24.Gere, JM and Timoshenko, SP, 1984, “Mechanics of Materials”, 2nd Ed., Wadsworth Inc.
25.Gibson, R. E., G. L. England, and M. J. L. Huessey, 1967,“The Theory of One Dimension Consolidation of Saturated Clay”, Geotechnique, Vol.17, No.3, pp.261-273.
26.Graham, J., and S. L. -K. Lau, 1988,“Influence of Stress Release Disturbance, Storage, and Reconsolidation Procedures on the Shore Behaviour of Reconstituted Underwater Clay”, Geotechnique, Vol.38, No.2, pp.279-300.
27.Gray, H., 1936,“Progress Report on Research on the Consolidation of Fine Grained Soils”, Proc. 1st Inter. Conf. Soil Mech. Found. Eng.(Cambridge), Vol.II, pp.138-141.
28.Hansen, J. B., and R. E. Gibson, 1949,“Undrained Shear Strengths of Anisotropically Consolidated Clays”, Geotechnique, London, England, Vol.1, No.3, pp.189-204.
29.Henkel, D. J., 1960,“The Shear Strength of Saturated Remolded Clays”, Proceedings of ASCE Special Conference On Shear Strength of Cohesive Soils, Boulder, pp.533-554.
30.Hight, D. W., R. Boeese, A. P. Butcher, C. R. I. Clayton, and P. R. Smith, 1992,“Disturbance of the Bothkennar Clay Prior to Laboratory Testing”, Geotechnique, Vol.42, No.2, pp.199-217.
31.Holtz, RD and Kovacs, WD, 1981, “An Introduction to Geotechnical Engineering”, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
32.J. Chu et. al., 2002, “Consolidation and Permeability of Singapore Marine Clay”, Journal of Geotechnical and Groenvironmental Engineering, September, pp724-732.
33.Jamiolkowski, M., C. C. Ladd, J. T. Germaine, and R. Lancellotta, 1985,“New Developments in Field and Laboratory Testing of Soils:Theme Lecture 2”, Proceedings of the 8th International Conference on Soil Mechanics Foundation Engineerings, San Francisco, Vol.1, pp.57-153.
34.Kallstenius, T., 1958,“Mechanical Disturbances in Clay Samples Taken with Piston Samplers”, Proceedings of the Royal Swedish Geotechnical Institute, No.16, pp.1-75.
35.Kallstenius, T., 1963,“Studies on Clay Samples Taken with Piston Sampler”, Proceedings of the Royal Swedish Geotechnical Institute, Stockholm , No.21 ,210pp.
36.Kallstenius, T., 1971,“Secondary Mechanical Disturbance; Effects in Cohesive Soil Samples”, Proceedings of the Special Session on Quality in Soil Sampling, 4th Asian Conference of International Society for Soil Mechanics and Foundation Engineerings, Bangkok, pp.30-39.
37.Kirkpatrick, W. M., and A. J. Khan, 1984,“The Reaction of Clays to Sampling Stress Relief”, Geotechnique, Vol.34, No.1, pp.29-42.
38.Ladd, C. C., and T. W. Lambe, 1963,“The Strength of Undisturbed Clay Determined from Undrained Tests”, Laboratory Shear Testing of Soils (STP361), ASTM, Philadelphia Pa., pp.342-371.
39.Ladd, C. C., and R. Foott, 1974,“New Design Procedure for Stability of Soft Clays”, Journal of the Geotechnical Engineering Division, ASCE, Vol.100, No.GT7, pp.763-786.
40.Ladd, C. C., and R, Foott, 1977,“Foundation Design of Embankments Constructed on Varved Clays”, FHWA TS-77-214, U.S. Dept. of Transp., Washington D. C.
41.Ladd, C. C., 1991,“Stability Evaluation during Staged Construction”, Journal of Geotechnical Engineering, ASCE, Vol.117, No.4, pp.540-615.
42.Lambe , T. W. , 1951,“Soil Testing for Engineers”, New York. John Wiley& Sons , INC. London. Sydney, pp.122-133.
43.Lambe, T. W., and R. V. Whitman, 1969,“Soil Mechannics”, 1st Ed., John Wiley & Sons, Inc., New York, N.Y.
44.Lee, K., 1984, Discussion“On Terzaghi's Concept of Consolidation”, Geotechnique, Vol.34, No.1, pp.131-132.
45.Lefebvre, G., C. C. Ladd, G. Mesri, and F. Tavenas, 1983,“Report of the Testing Subcommittee”, Committee of Specialists on Sensitive Clay on the NBR Complex, SEBJ, Montreal, Canada, Annexe I.
46.Leonards, G. A., 1962,“Engineering Properties of Soils”, McGraw-Hill, New York, U.S.A..
47.Locat, J., and G. Lefebvre, 1986,“Origin of the Structuration of the Grande-Baleine Marine Sediments”, Quarterly Journal of Engineering Geology, Vol.19, pp.365-374.
48.Locat, J., 1996,“On the Development of Microstructure in Collapsible soils:Lessons from the Study of Recent Sediments and Artificial Cementtation”, In:Genesis and Properties of Collapsible Soils by E. Derbyshire, T. Dijstra, and I. J. Smalley, Klewer Academic Publisher, Dordrecht, The Netherlands, pp.93-128.
49.Locat, J., and H. Tanaka, 2002,“Glacial and Non-Glacial Clay:An Overview of their Nature and Microstructure”, Coastal Geotechnical Engineering in Practice, Japan, Vol.2, pp.163-175.
50.Mayne, P. W., 1985,“Stress Anisotropic Effects on Clay Strength”, Journal of Geotechnical Engineering, ASCE, Vol.111, No.3, pp.356-366.
51.Mayne, P. W.; Kulhawy, H. Fred; Kay, 1990,“Observations on the Development of Pore-Water Stresses during Piezocone Penetration in Clays”, Canadian Geotechnical Journal, V.27, No.4, pp.418-428.
52.McVag, M., F. Townsend, and D. Bloomquist, 1986,“Quiescent Consolidation of Phosphatic Waste Clay”, Journal of Geotechnical Engineering, ASCE, Vol.112, No.11, pp.1033-1047.
53.Milovic, D. M., 1971,“Effect of Sampling on Some Loess Characteristics”, Proceedings of the Special Session on Quality in Soil Sampling, 4th Asian Conference of International Society for Soil Mechanics and Foundation Engineering, Bangkok, pp.17-20.
54.Myint Win Bo, Wong Kai Sin, Victor Choa, and The Cee Ing, 2003, “Compression Tests of Ultra-Soft Soil Using an Hydraulic Consolidation Cell”, Geotechnical Testing Journal, Vol.26, No.3, pp310-321.
55.Nagaraj, T. S., and Narashimha Raju, P. S. R., 2001, “Discussion on The Permesbility of Clay Suspensions”, Geotechnique, Vol 51, No.4, pp375-376.
56.Noorany, I., and H. B. Seed, 1965,“In Situ Strength Characteristics of Soft Clays”, Journal of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, Vol.91, No.SM2, pp.49-80.
57.Parry, R. G. H., 1960,“Triaxial Compression and Extension Tests on Remolded Saturated Clay”, Geotechnique, Vol.10, No.4, pp.166-180.
58.Raymond, G. P., and H. E. Wahls, 1976,“Estimating One-Dimensional Consolidation, Including Secondary Compression of Clay Loaded form Overconsolidated to Normally Consolidated State”, Special Report 163, Transportation Research Board, pp.17-23.
59.Roscoe, K. H., and J. B. Burland, 1968,“On the Generalized Stress-Strain Behavior of Wet Clays”, Proc. Of Eng. Plasticity, Cambridge Univ. Press, pp.535-609.
60.Sangrey, D. A., 1975,“Normalized Design Procedures in Sensitive Clays”, Journal of Geotechnical Engineering Division, ASCE, Vol.10, No.GT11, pp.1181-1187.
61.Schffman, R. L., and S. K. Arya, 1977,“One-Dimensional Consolidation”, in C. S. Desai and J. T Christain(ed), Numerical methods in Geotechnical Engineering, McGraw-Hihh, pp.364-398.
62.Schjetne, K., 1971,“The Measurement of Pore Pressure During Sampling”, Proceedings of Special Session on Quality in Soil Sampling, 4th Asian Conference of International Society for Soil Mechanics and Foundation Engineerings, Bangkok, pp.12-16.
63.Schmertmann, J. H., 1956,“Discussion on “Effect of Sample Disturbance on the Strength of a Clay”, Transactions of the American Society for Civil Engineers, Vol.121, pp.940-950.
64.Schofield , A., and Wroth., 1968,“Critical State Soil Mechanics”, McGraw-Hill Book Co., London. Pp.88~166.
65.Silva, A. J., 1974,“Marine Geomechanics:Overview and Projections. In: Deep Sea Sediments”, Physical and mechanical Properties, A.L. Inderbitzen, (ed), Plenum press, New York, pp.45-76.
66.Skempton, A. W., 1954,“The Pore-Pressure Coefficients A and B”, Geotechnique, Vol.4, pp143-147.
67.Skempton, A. W., and L. Bjerrum, 1957,“A Contribution to The Settlement Analysis of Foundations on Clay”, Geotechnique, Vol.7, pp.168-178.
68.Skempton, A. W., and V. A. Sowa, 1963,“The Behavior of Saturated Clays During Sampling and Testing”, Geotechnique, Vol.13, No.4, pp.269-290.
69.Szalwinski, C. M., 1984, Discussion“On Terzaghi’s Concept of Consolidation”, Geotechnique, Vol.34, No.1, pp.132-133.
70.Terzaghi, K, 1923,“Die berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen(The calculation of the coefficient of permeability of clays on the basis of hydrodynamic stress phenomena)”, Sitzungsberichte der Wiener Akademie der Wissenschaften, Math., Naturw. Klasse, Vienna, pt.2a, Vol.132, No.3/4, pp.125.
71.Thiam-Soon Tan, Fook-Hook Lee, Poh-Ting Chong, and Hiroyuki Tanaka, 2002, “Effect of Sampling Disturbance on Properties of Singapore Clay”, Journal of Geotechnical and Groenvironmental Engineering, November, Vol.28, No.411, pp898-906.
72.Szalwinski, C. M., 1984, Discussion“On Terzaghi’s Concept of Consolidation”, Geotechnique, Vol.34, No.1, pp.132-133.
73.Vaid, Y. P., and R. G., Campanella, 1974,“Triaxial and Plane Strain Behavior of Natural Clay”, Journal of Geotechnical Engineering Division, ASCE, Vol.100, No.3, pp.207-224.
74.Yong, R. N., and B. P. Warkentin, 1975,“Soil Properties and Behaviour”, Elsevier Scientific Publishing Co., New York, 449pp
75.Znidarcic, D. and R. L. Schiffman,, 1982,“On Terzaghi’s Concept of Consolidation”, Geotechnique, Vol.32, No.4, pp.387-389.
76."Japanese Society of Soil Mechanics and Foundation Engineering", 1979, Japan.
77.王明光、江博能,2003,”以同構取代電荷來分類黏土礦物”,經濟部中央地質調查所彙刊。
78.中興工程顧問股份有限公司,2000,“馬祖福澳國內商港工程之整理平面配置檢討修正及基本設計報告”。
79.行政院經濟建設委員會,2001,”行政院經建會第一0三九次委員會議決議紀錄”。
80.吉泰工程顧問有限公司,1999,“馬祖福澳國內商港工程-細部設計與監造工作地質鑽探及試驗報告書”。
81.交通部,1997,“港灣構造物設計基準-碼頭設計基準及說明”。
82.李寬材,1986,“重訪德在基壓密論”,地工技術,第13期,第13~26頁。
83.曹立夫,2002,“軟弱黏土主要壓密中之壓縮性參數之研究”,碩士論文,私立中園大學土木工程學系,中壢。
84.陳宗欽,2004,”近岸結構物下海床軟弱沉泥力學特性之研究”,碩士論文,國立台灣海洋大學河海工程研究所,基隆。
85.營建署,2002,”推動建立填海造地工程規劃設計及施工標準化”。
86.簡連貴、張志新、張上君、陳宗欽,2003,”拋石防波堤於海床軟弱地盤沉陷穩定技術評估”,國科會補助提升產業技術及人才培育研究計畫。
87.劉賢淋,2001,”大地工程學(上、下)”,文笙書局。
88.交通部運輸研究所,2005,” 台灣西南沿海地區軟弱地質交通結構物設計處理對策研究”。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top