跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 16:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋嘉
研究生(外文):Wei-chia Chen
論文名稱:添加爐石粉對混凝土抗壓強度及滲透行為之探討
論文名稱(外文):Compressive Strength and Permeability of GGBS Concrete
指導教授:黃然黃然引用關係
指導教授(外文):Ran Huang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:108
中文關鍵詞:電阻係數替代百分率氯離子穿透相關性
外文關鍵詞:resistivityreplacement percentagechloride ion penetrationcorrelation
相關次數:
  • 被引用被引用:16
  • 點閱點閱:464
  • 評分評分:
  • 下載下載:111
  • 收藏至我的研究室書目清單書目收藏:3
本研究旨在探討添加爐石粉對混凝土強度及滲透行為的影響。混凝土材料變數包含水膠比(0.35、0.45、0.55),爐石粉取代水泥重量百分率(20%、40%、60%)。試驗項目包括抗壓強度試驗、電阻係數試驗、吸水率試驗、表面吸水速率試驗及氯離子快速穿透試驗。
試驗結果顯示混凝土試體抗壓強度隨著水膠比的增加而減少;爐石粉替代率愈高,混凝土早期(7天)抗壓強度愈低,適當的爐石粉取代部分水泥,後期強度及電阻係數會提高而吸水率及表面吸水速率會降低。混凝土中添加爐石粉可降低氯離子移動速率,當爐石粉取代水泥重量百分率增加時,吸水率及表面吸水速率降低、電阻係數提高。吸水率及表面吸水速率、電阻係數、通過總電荷量與氯離子擴散係數間存有明顯的關聯性。
The objective of this study is to investigate the compressive strength and permeability of GGBS concrete. GGBS concrete specimens with various water/binder ratios (W/B=0.35、0.45、0.55) and various slag replacement percentages (by weight of cement, S/B=20%、40%、60%). Compressive strength test, resistivity test, rapid chloride penetration test, absorption test, and sorptivity test were performed.
Test results indicate that the compressive strength decreases as water/binder ratio increases and GGBS concrete has lower strength at early age than normal concrete. However, after 28 days GGBS concrete becomes denser than normal concrete and has lower resistivity, absorption, soptivity, chloride ion penetration rate and higher compressive strength than normal concrete. And, concretes with higher slag replacement percentages demonstrate better quality due to denser internal structure from slag reaction. Test results were correlated and interrelation among them was also observed.
中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
表 目 錄 VI
圖 目 錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究動機及目的 1
1-3 研究方法與流程 3
第二章 文獻回顧 4
2-1 爐石粉性質及其對混凝土之影響 4
2-1-1 爐石粉製程與來源 4
2-1-2 爐石粉化學成份 7
2-1-3 爐石粉水化性質 7
2-1-4 添加爐石粉對新拌混凝土性質之影響 9
2-1-5 添加爐石粉對硬固混凝土性質之影響 11
2-2 影響鋼筋腐蝕之因素 13
2-2-1 混凝土中性化 14
2-2-2 氯離子入侵 15
2-3 氯離子在混凝土滲透的因素 19
2-3-1 內部連通孔隙 19
2-3-2 外在環境因素 20
2-3-3 水膠比 21
2-3-4 膠結材料 22
2-3-5 粒料性質 23
2-3-6 氯化物性質 23
2-4 氯離子滲透試驗法 24
第三章 試驗計劃 30
3-1 試驗變數 30
3-2 試驗材料、配比設計與試體 30
3-3 試驗方法與設備 38
3-3-1 抗壓強度試驗 38
3-3-2 電阻試驗 39
3-3-3 吸水率試驗 40
3-3-4 表面吸水速率試驗 41
3-3-5 氯離子快速滲透試驗 41
第四章 結果與討論 50
4-1 抗壓強度 50
4-2 電阻係數 57
4-3 吸水率 63
4-4 表面吸水速率 68
4-5 快速氯離子滲透試驗 75
4-6 氯離子擴散係數 90
第五章 結論與建議 101
5-1 結論 102
5-2 建議 102
參考文獻 103
(1) 行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」,(2001).
(2) 中國鋼鐵公司,「爐石利用推廣手冊」
(3) 鄭凱維, “緻密爐石水泥混凝土工程性質之研究”, 國立台灣科技大學營建工程系碩士學位論文,九十一年五月.
(4) G. J. Osborne, “Durability of Portland Blast-furnace Slag Cement Concrete” Cement and Concrete Composites, Vol. 21, pp. 11-21 (1999).
(5) 沈得縣, “高爐熟料與飛灰之波索蘭反應機理及對水泥漿體巨微觀性質影響之研究”,國立台灣工業技術學院博士論文,民國80年.
(6) V.S. Ramachandran , R.F. Feldman and J.J. Beaudoin , and Son , London ,(1980)
(7) 傅國柱, “還原碴取代部份水泥之研究”, 國立中央大學土木工程研究所碩士學位論文,九十一年五月.
(8) Roy , D. M. , and G. M. ,Idorn, “Hydration Structure , and Properties of Blast Furnace Slag Cements , Mortars and Concrete ”, ACI Journal , Technical paper NO.79-43, pp444-457,(1982).
(9) Metha , P. K. , “Pozzolanic and Cementitious Byproductions as Mineral Admixtures for Concrete – A Critical Review ”, First Internation Conference on the Use of Fly Ash , Silica Fume , Slage and other Mineral By – products in Concrete , ACI SP-79, pp1-46,Canada,(1983).
(10) 黃兆龍,〝高等混凝土技術〞,國立台灣工業技術學院,1985。
(11) Kruyt, H. R., “Colloid Science”, Elsevier Pulishing Company.New York,1952.
(12) PHilleo, R. E., “Slage or Other Supplementary Materials”, ACI SP114-58, pp.1197-1207,1989.
(13) ACI Committee 233,〝Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete〞, American Concrete Institute, Detroit, 1996.R.D.Hooton and J.J.Emery,Sulfate resistance of a Canadian slag cement,ACI Materials Journal,Vol.87,pp.547-555(1990).
(14) R.D.Hooton and J.J.Emery,Sulfate resistance of a Canadian slag cement,ACI Materials Journal,Vol.87,pp.547-555(1990)
(15) 陳振川、詹穎雯〝填加飛灰與高爐石粉混凝土之體積穩定探討〞,高爐石粉與飛灰資源在混凝土工程上應用研討會論文集,台北,民國七十五年十二月。
(16) Hogan, F.J. and Meusel, J.W., 〝Evaluation for Durability and Strength Development of a Ground Granulated Blast-Furnace Slag,〞Cement, Concrete, and Aggregates, V.3, No.1, Summer, pp.40-52(1981).
(17) 林維明,〝鋼筋混凝土腐蝕要因及對策之探討〞,港灣技術研究所,民國87年12月。
(18) Ngala,V.T. and Page, C.L., 〝Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Portland Cement,〞Cement and Concrete Research,Vol.27,No.7,pp.995-1007,(1997).
(19) Leber, I. And Blakey, F.A. 〝Some Effects of Carbon Dioxide on Mortars and Concretet,〞ACI,SP-53,pp.295-308,(1956)
(20) Ismail,N. et al., 〝Effects of Carbonation on Microbial Corrosion of Concretes,〞Construction Management and Engineering,No.474,pp.133-138,(1993).
(21) Hope, B.B., Page, J.A., and Ip, AK.C., “Corrosion Rate of Steel in Concrete ”, Cement Concrete Research, Vol. 16,No. 5, pp71-781,(1986).
(22) 紀茂傑, “混凝土耐久性影響因素及評估方法之研究”, 國立台灣海洋大學河海工程研究所博士學位論文,91年6月.
(23) Arya ,Buenfeld N. R. and Newman J. B. , “Factors Influencing Chloride-Binding ”, Cement and Concrete Research , Vol.20,No.2,pp291-300,(1990).
(24) A. M. Brandt, “Cement-based Composites: Materials, Mechanical Properties and Performance”, E & FN SPON, pp. 116-118 (1995).
(25) 黃兆龍,〝混凝土中氯離子檢測分析方法〞,海砂與土木建築結構物可靠度關係研習會,1994。
(26) Enevoldsen J. N. and Hansson C. M. , “Binding of Chloride in Mortar Containing Admixed or Penetrated Chlorides”, Cement and Concrete Research , Vol.24,No.8,pp1525-1533,(1994).
(27) 紀茂傑 “不同齡期混凝土氯離子擴散行為之研究”, 國立台灣海洋大學河海工程研究所碩士學位論文,82年6月.
(28) Gj�廨v O. L., N. R. Sort, and A. el. Tarras, “Diffusion of Chloride Ions from Seawater into Concrete ” , Cement Concrete Research, Vol. 9,No.2, pp229-238,(1979).
(29) Goto, Seishi, and D. M. Roy, “Diffusion of Ions through Hardened Cement Pastes ” , Cement Concrete Research, Vol.11, No.5/6, pp751-757,(1981).
(30) Page,C. L.,N. R. Sort,and A. E. Tarras,“Diffusion of Chloride Ions in Hardened Cement Pastes ”,Cement Concrete Research, Vol.11, No.3, May,pp.395-406,(1981).
(31) Mehta, P. K. and P. J. M. Monteiro,“Concrete-Structure,Properties,and Materials”, Prentice Hall,pp. 118-119 (1993)
(32) Page, C. L.,N. R.Sort,and W. R. Holden, “Influence of Different Cement on Chloride-Induced Corrosion of Reinforcing Steel ”,Cement Concrete Research, Vol.16, No.1, Jan., pp.79-86,(1981).
(33) Shah, S. P. “High performance concrete: past, present and future”, in: C. K. Leung, Z. Li, and J. T. Ding (eds),“High Performance Concrete-Workability,Strength and Durability” (The Hong Kong University of Science and Technology,Hong Kong, 2000) 3-29
(34) Johnnesson,B. F. “Diffusion of a Mixture of Cation and Anions Dissolved in Water”,Cement Concrete Research, Vol.29, pp.1261-1270,(1999).
(35) 卓世偉, “加速氯離子移動試驗探討氯離子於水泥基複合材料中之傳輸行為”, 國立台灣海洋大學材料工程研究所博士學位論文,91年6月.
(36) AASHTO T259-80, “Resistance of Concrete to Chloride Ion Pentration, Standard specification for transportation materials and methods of sampling and testing” (1980).
(37) R. J. Detwiler, O. K. Kjellsen, and O. E. Gjψrv,“ Resistance to chloriede intrusion of concrete cured at different temperatures”,ACI Materials Journal, Vol. 88, pp. 19-24 (1991).
(38) R. J. Detweiler and C. A. Fapohunda, “ A comparison of two methods for measuring the chloride ion permeability of concrete”,Cement, Concrete, and Aggregate, Vol. 15, pp. 70-73 (1993).
(39) C. C. Yang, S. W. Cho, R. Huang,“The relationship between charge passed and the chloride migration test”, Cement and Concrete Research, Vol. 31, pp. 1-6 (2002).
(40) ASTM 1202-00,“Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration”,American Society for Testing and Materials(2000).
(41) AASHTO T26-79,”Quality of Water to be Used in Concrete”, Standard Specification for transportation materials and methods of sampling and testing(1979).
(42) ASTM 39-99, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”,American Society for Testing and Materials(1999).
(43) Wenner F.“Bulletin of the Bureau of Standards”,V.12,pp.469-478,1915.
(44) ASTM C642-97,“Standard Test Method for Density, Absorption, and Voids in Hardened Concrete”,American Society for Testing and Materials(1997).
(45) Hall C.(“Water Sorptivity of Mortars and Concrete:a review”,Magazine of Concrete Research,Vol.12,No.6,pp.51-61,1989
(46) AASHTO T260-94, “Sampling and Testing for Total Chloride Ion in Concrete Raw Materials”, Standard specification for transportation materials and methods of sampling and testing(1994).
(47) 張峻傑,“以加速氯離子穿透試驗評估混凝土耐久性之研究”,國立台灣海洋大學材料工程研究所碩士學位論文,92年6月.
(48) C. Andrade,“Calculation of chloride diffusion coefficients in concretefrom ionic migration measurements”, Cement and Concrete Research,Vol. 23, pp. 724-742 (1993).
(49) D.M. Roy and G. M.Idom,“Hydration,Structure,and Properties of Blast Furnace Slag Cement , Mortar and Concrete”, ACI Journal , Technical paper no.79-43, pp.444-457 (1982).
(50) R. Feldman, L. R. Prudencio, and G. Chan,“Rapid Chloride Permeability Test on Blend Cement and Other Concretes: Correlations Between Charge, Initial Current and Conductivity”,Construction and Buliding Materials, Vol. 13, pp. 149-154 (1999).
(51) Pfeifer, D.W.,D.B. McDonald and P.D. Krauss,“The Rapid Chloride Permeability Test and Its Correlation to the 90-Day Cholide Ponding Testing”,Cement and Concrete Research,Vol.39,No.1,pp. 38-47 (1994).
(52) 蔣林華,”混凝土抗氯離子滲透性研究”,中國腐蝕與防務學報,第22卷,第6期,pp.343-348,(2002)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top