跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡敬廷
研究生(外文):Jing-Ting Tsai
論文名稱:飛魚組胺酸相關化合物與生物胺形成之探討
論文名稱(外文):Studies on histidine-related compounds and formation of biogenic amines in flying fish
指導教授:蕭泉源蕭泉源引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:112
中文關鍵詞:飛魚組胺酸生物胺緩衝能力
外文關鍵詞:flying fishhistidinebiogenic aminebuffering capacity
相關次數:
  • 被引用被引用:10
  • 點閱點閱:518
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究探討七種飛魚包括黑鰭飛魚(Cheilopogon cyanopterus)、白鰭飛魚(Cheilopogon unicolor) 、斑鰭飛魚(Cypselurus poecilopterus)、紫斑鰭飛魚(Cheilopogon spilonotopterus) 、細頭飛魚(Cypselurus angusticeps)、白短擬鰭飛魚(Parexocoetus brachypterus)和紅斑鰭飛魚(Cheilopogon atrisignis)等之組胺酸(histidine, His)、甲肌肽(ß-alanyl-1-methyl-L- histidine, anserine, Ans)和肌肽(ß-alanyl-L-histidine, carnosine, Car)含量之差異,從中選擇兩種化學組成差異較大之飛魚肉在4及25℃進行貯存試驗,以了解鮮度變化以及生物胺之產生情況。
不同種類之飛魚水分含量在75~79% 之間,蛋白質在20~24% 之間,而脂肪含量皆在0.6%以下,屬高蛋白低脂魚。七種飛魚皆富含His (232~473 mg/100g),黑鰭、紫斑鰭、白短擬鰭和紅斑鰭等四種飛魚之His含量較高,皆達380 mg/100g以上,但Ans和Car量小;白鰭飛魚與其他飛魚在游離胺基酸與雙胜肽組成明顯不同,其Ans含量高達326 mg/100g,但His含量則為所有飛魚中最低者;細頭和斑鰭兩種飛魚之His和Ans皆較低。黑鰭與白鰭飛魚之血合肉中His、Ans及Car含量皆明顯低於普通肉,其牛磺酸(taurine)含量則較普通肉高。黑鰭飛魚之His含量以在屏東所採集者最高,其次台東,宜蘭最低;白鰭飛魚之His與Ans含量亦以屏東樣品最高,台東者為三地中最低。
七種飛魚之pH值介於6.1-6.5之間,黑鰭飛魚、白鰭飛魚、黃鰭鮪(Thunnus albacares)、吳郭魚(Tilapia zillii)及海鱺(Rachycentron canadum)普通肉緩衝能力最高之pH範圍皆在pH 6-7,其中黃鰭鮪、黑鰭及白鰭飛魚緩衝能力顯著高於吳郭魚和海鱺,飛魚與鮪魚因含高量之His與Ans而有較高之pH緩衝能力。
黑鰭與白鰭飛魚在25℃貯存12~18小時總生菌數(anaerobic plate count, APC)以對數增加,在第18小時明顯有臭味產生,18及24小時揮發性鹽基態氮(volatile basic nitrogen, VBN)含量超過初期腐敗標準值(25 mg/100 g),氨含量亦在24小時後明顯增加;在4℃貯存2天後APC逐漸增加,VBN含量在第6天開始明顯增加,18天後超過25 mg/100g,氨含量則在12天後明顯上升。兩種飛魚普通肉在25℃貯藏18~24小時後pH緩衝能力先下降而後上升,與初期腐敗之時間相對應。
黑鰭與白鰭飛魚之ATP相關化合物在25℃貯藏初期以IMP為主要化合物,並在18~36小時之間分別由7.5及7.6 μmol/g迅速減少為0.2及2.3 μmol/g, K值由27.9及29.8 %迅速增加至91.7及71.2 %;相較之下4℃貯藏時K值變化明顯較為緩慢。
黑鰭與白鰭飛魚在25℃貯藏60與72小時,His含量皆明顯減少,而Ans變化不大;4℃貯存時His則無明顯變化,總游離胺基酸含量在25℃及4℃貯藏後期皆有大量增加之情形。生鮮飛魚中並無Orn存在,在初期腐敗時產生,似可作為鮮度及腐敗程度之輔助指標。黑鰭與白鰭飛魚在貯存期間產生之生物胺以腐胺、屍胺及組織胺為主,前趨物分別為Orn、Lys及His,且Him增加之莫耳數與His減少之莫耳數相當。兩種飛魚25℃貯存至24小時之生物胺指標(biogenic amine index, BAI)分別為0.81及0.65,已接近食品中毒風險之臨界值1,至36小時則分別高達6.13及3.17;4℃貯存下黑鰭與白鰭飛魚達臨界值則分別約在第13及15天。
Abstract
The contents of histidine (His), anserine (ß-alanyl-1-methyl-L- histidine, Ans) and carnosine (ß-alanyl-L-histidine, Car) in margined flyingfish (Cheilopogon cyanopterus), whitefin flyingfish (Cheilopogon unicolor), yellowfin flyingfish (Cypselurus poecilopterus), sailfin flyingfish (Parexocoetus brachypterus), narrowhead flyingfish (Cypselurus angusticeps), stained flyingfish (Cheilopogon spilonotopterus) and glider flyingfish (Cheilopogon atrisignis) were analyzed in this stduy. Two specimens with bigger difference on chemical compositions were selected to investigate the changes of freshness and the formation of biogenic amines during storage at 4 and 25℃.
The moisture in seven specimens ranged from 75 to 79 % and protein from 20 to 24 %. Flying fish were lean fish with lipid content lower than 0.6 %. Flying fish were rich in His ranged from 232~473 mg/100g. The His contents of margined, sailfin, stained and glider flying fish were higher than 380 mg/100g, but their Ans and Car were relatively low. The compositions of free amino acids and dipeptides of whitefin flyingfish were different from those of the other species. It had a very high level of Ans (326 mg/100g) with the lowest amount of His. Both His and Ans in narrowhead and yellowfin flying fish were lower as compared to those of the other species. The contents of His, Ans and Car in dark muscle of flyingfish were much lower than those in white muscle. However, the former had a much higher amount of taurine than the latter. The content of His in margined flyingfish collected from Pintung were the highest, follow by those from Taitung and I-Lan. The whitefin flyingfish sampled from Pintung also had the highest contents of His and Ans, while those form Taitung were the lowest.
The pH values of white muscle of seven specimens ranged from 6.1 to 6.5. The white muscle of margined flyingfish, whitefin flyingfish, yellowfin tuna, tilapia and cobia had the highest buffering capacities in the range of pH 6-7. The buffering capacities of yellowfin tuna, margined flyingfish and whitefin flyingfish were significantly higher than those of tilapia and cobia. Flying fish and tuna had higher pH buffering capacities due to large amounts of His and Ans present in their white muscles.
The contents of aerobic plate count (APC) of margined and whitefin flying fish increased in logarithm when stored at 25℃ for 12 to 18 hour, and obious odors occurred at the 18th hour. The contents of volatile basic nitrogen (VBN) were higher than 25 mg/100g at the 18th and the 24th hours respectively, while the contents of ammonia increased significantly at the 24th hour. When stored at 4℃, the content of APC increased gradually after storage for 2 days, while the content of VBN increased drastically at the 6th day and was higher than 25 mg/100g at the 18th day. The content of ammonia had an obvious increase at the 12th day. The buffering capacities of white muscle in two species of flying fish decreased after storage for 18 to 24 hours and thereafter increased, which were associated with the stage of their initial decomposition.
Among the ATP-related compounds of margined and whitefin flyingfish, IMP was the most predominant compound at initial stage of storage and decreased rapidly after storage at 25℃ for 18 to 36 hours. The K values increased rapidly from 27.9 and 29.8 % to 91.7 and 71.2 %, respectively. As compared with those stored at 25℃, the changes of K values were significantly lower during storage at 4℃.
The contents of His of margined and whitefin flyingfish decreased after storage at 25℃ for 60 and 72 hours, but Ans remained changed. The content of His did not change significantly when storage at 4℃. The amounts of free amino acids gradually increased during storage at 25 and 4℃. Ornithine (Orn) was not detected in flying fish muscle; however, it was found in a considerable amount at the stage of initial decomposition. Therefore it might be used as an indicator for freshness and degrees of decomposition. The biogenic amines of margined and whitefin flyingfish, including putrescine (Put), cadaverine (Cad) and histamine (Him) were the most predominant compounds during storage. Their precursors were Orn, lysine (Lys) and His, respectively. The decreased mole of His was almost equal to the increased mole of Him. The biogenic amine index (BAI) values of two species of flying fish were 0.81 and 0.65 after storage at 25℃ for 24 hours, which were close to 1, the hazard value induced scombroid poisoning. The values increased to 6.13 and 3.17 at the 36th hour of storage, respectively. When stored at 4℃, the BAI values of margined and whitefin flyingfish reached the hazard value at the 13th and the 15th day.
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅵ
表目錄 Ⅹ
圖目錄 XII
壹、前言 1
貳、文獻整理 5
一、飛魚的生物特徵、漁業、利用與文化 5
(一) 生物特徵 5
(二) 漁業 5
(三) 利用 6
(四) 蘭嶼達悟族之飛魚文化 7
二、游離組胺酸及其相關雙胜肽 9
(一) 分佈 9
(二) 生理功能 11
(三) 應用 19
(四) 肌肽和甲肌肽之分解酶 20
三、食品中之生物胺 22
(一) 生物胺之生成 22
(二) 生物胺之代謝 22
(三) 生物胺與食品中毒 23
(四) 魚類生物胺生成菌 25
四、魚貝類鮮度指標 26
(一) 總生菌數 27
(二) VBN及NH3 27
(三) K值 28
(四) 生物胺指標(BAI) 28
參、材料與方法 30
一、研究項目、進行步驟與樣品製備 30
(一) 不同品種飛魚化學特性以及組胺酸相關化合物組成分析 30
(二) 飛魚及其他魚類貯藏期間緩衝能力之比較 30
(三) 普通肉與血合肉及不同地點飛魚組胺酸相關化合物組成之差異
31
(四) 飛魚貯藏期間鮮度、組胺酸相關化合物與生物胺之變化 31
二、化學分析方法 31
(一) 一般成分 31
(二) pH值 32
(三) 總生菌數(APC) 32
(四) 肌肽、甲肌肽、β-丙胺酸、組胺酸、其他游離胺基酸與氨 32
(五) ATP相關化合物與K值之計算 33
(六) 緩衝能力 34
(七) 揮發性鹽基態氮 34
(八) 生物胺 35
三、統計分析 36
肆、結果與討論 37
一、不同品種飛魚化學特性以及組胺酸相關化合物組成分析 37
(一) 一般成分與pH值 37
(二) 游離胺基酸與雙胜肽 38
二、飛魚與其他魚類緩衝能力之比較 40
三、飛魚普通肉與血合肉以及不同地點樣品組胺酸相關化合物成分之差異 41
四、飛魚普通肉25℃及4℃貯藏期間鮮度、組胺酸相關化合物與生物胺之變化 42
(一) 總生菌數、pH值與緩衝能力 42
(二) 揮發性鹽基態氮及氨 44
(三) ATP相關化合物及K值 46
(四) 游離胺基酸 48
(五) 生物胺 52
伍、結論 56
陸、參考文獻 57
柒、表 82
捌、圖 106

表 目 錄
表一、飛魚之名稱、體重與體長 82
表二、飛魚之一般成分與pH值 83
表三、飛魚普通肉游離胺基酸及雙胜肽之含量 84
表四、飛魚普通肉與血合肉游離胺基酸及雙胜肽含量之比較 85
表五、不同地點飛魚普通肉之游離胺基酸及雙胜肽含量 86
表六、黑白鰭飛魚普通肉在25℃貯藏期間總生菌數及pH值之變化 87
表七、黑白鰭飛魚普通肉在4℃貯藏總生菌數及pH值之變化 88
表八、黑白鰭飛魚普通肉在25℃貯藏期間揮發性鹽基態氮含量之變化
89
表九、黑白鰭飛魚普通肉在25℃貯藏期間時氨含量之變化 90
表十、黑白鰭飛魚普通肉在4℃貯藏期間揮發性鹽基態氮含量之變化
91
表十一、黑白鰭飛魚普通肉在4℃貯藏期間時氨含量之變化 92
表十二、黑鰭飛魚普通肉25℃貯藏期間ATP及其相關化合物含量之變化 93
表十三、白鰭飛魚普通肉25℃貯藏期間ATP及其相關化合物含 量之變化
94
表十四、黑鰭飛魚普通肉4℃貯藏期間ATP及其相關化合物含量之變化
95
表十五、白鰭飛魚普通肉4℃貯藏期間ATP及其相關化合物含量之變化
96
表十六、黑鰭飛魚普通肉在25℃貯藏期間游離胺基酸及雙胜肽 含量之變化
97
表十七、白鰭飛魚普通肉在25℃貯藏期間游離胺基酸及雙胜肽含量之變化 98
表十八、黑鰭飛魚普通肉在4℃貯藏期間游離胺基酸及雙胜肽 含量之變化
99
表十九、白鰭飛魚普通肉在4℃貯藏期間游離胺基酸及雙胜肽含量之變化 100
表二十、黑鰭飛魚普通肉25℃貯藏期間生物胺含量之變化 101
表二十一、白鰭飛魚普通肉25℃貯藏期間生物胺含量之變化 102
表二十二、黑鰭飛魚普通肉4℃貯藏期間生物胺含量之變化 103
表二十三、白鰭飛魚普通肉4℃貯藏期間生物胺含量之變化 104
表二十四、飛魚與其他魚類普通肉緩衝能力之變化 105

圖 目 錄
圖一、黑鰭飛魚普通肉25℃貯藏期間組胺酸與組織胺之變化 106
圖二、白鰭飛魚普通肉25℃貯藏期間組胺酸與組織胺之變化 107
圖三、黑旗與白鰭飛魚普通肉於25℃貯藏期間生物胺指標之變化 108
圖四、黑白鰭飛魚普通肉於4℃貯藏生物胺指標之變化 109
圖五、飛魚與其他魚類之普通肉25℃貯藏期間pH 6~7之緩衝能力 110
圖六、黑鰭飛魚普通肉25℃貯藏期間緩衝能力之變化 111
圖七、白鰭飛魚普通肉25℃貯藏期間緩衝能力之變化 112
Ababouch, L., Afilal, M. E., Benabdeljelil, H. and Busta, F. F. 1997. Quantitative changes in bacteria, amino acids and biogenic amines in sardine (Sardina pilchardus) stored at ambient temperature (25-28℃) and in ice. Int. J. Food. Sci. Tech. 26:297-306.
Abe, H. 1983. Distribution of free L-histidine and related dipeptides in the muscle of fresh-water fishes. Comp. Biochem. Physiol. 76B:35-39.
Abe, H. 1995. Histidine-related dipeptides: distribution, metabolism, and physiological function. In “Biochemistry and Molecular Biology of Fishes”, Vol. 4. Hochachka P.W. and Mommsen T.P. (Ed.), p.309-333, Elsevier, Amsterdam.
Abe, H. and Okuma, E. 1991. Effect of temperature on the buffering capacities of histidine-related compounds and fish skeletal muscle. Nippon Suisan Gakkaishi 57:2101-2107.
Abe, H., Dobson, G. P., Hoeger, U. and Parkhouse, W. S. 1985. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. Am. J. Physiol. 249:R449-454.
Abe, H., Dobson, G. P., Hoeger, U. and Parkhouse, W. S. 1985. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. Am. J. Physiol. 249:R449-454.
Ambrose, J.A., Crimm, A., Burton, J., Paullin, K. and Ross, C. 1969. Fluorometric determination of histidine. Clin Chem. 15:361-366.
AOAC. 1995. Official Methods of Analysis, 14th ed. Association of Official Analytical Chemists, Arlington, VA.
Aruoma, O., Laughton, M. and Halliwell, B. 1989. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J. 264:863-869.
Bartholomew, B. A., Berry, P. R., Rodhouse, J. C. and Gilbert, R. J. 1987. Scombrotoxic fish poisoning in Britain: Features of over 250 suspected incidents from 1976 to 1986. Epidem. Inf. 99:775-782.
Behling, A. R. and Taylor, S. L. 1982. Bacterial histamine production as a function of temperature and time of incubation. J. Food Sci. 47:1311-1317.
Berkes, F. 1987. The common property resource problem and the fisheries off Barbados and Jamaica. Environ. Management 36:540-545.
Bjeldanes, L. F., Schutz, D. E. and Morris, M. M. 1978. On the aetiology of scormbroid poisoning: Cadverine potentiation of histamine toxicity in the guinea pig. Food Cosmet. Toxicol. 16:15-159.
Boldyrev, A. A. 1990. Retrospectives and perspectives on the biological activity of histidine-containing dipeptides. Int. J. Biochem. 22:129-132.
Boldyrev, A. A. 1993. Does carnosine possess direct antioxidant activity. Int. J. Biochem. 25:1101-1107.
Boldyrev, A. A., Abe, H., Stvolinsky, S. and Tyulina, O. 1995. Effect of carnosine and related compounds on generation of free oxygen species: a comparative study. Comp. Biochem. Physiol. 112B:481-485.
Boldyrev, A. A., Dupin, A. M., Batrukova, M. A., Bavykina, N. I., Korshunova, G. A. and Shvachkin, Y. P. 1989. A comparative study of synthetic carnosine analogs as antioxidants. Comp. Biochem. Physiol. 94B:237-240.
Boldyrev, A. A., Dupin, A. M., Bunin, A. Y., Babizhaev, M. A. and Severin, S. E. 1987. The antioxidative properties of carnosine, a natural histidine containing dipeptide. Biochem. Int. 15:1105-1113.
Boldyrev, A. A., Stvolinsky, S. L., Tyulina, O. V., Koshelev, V. B., Hori, N. and Carpenter, D. O. 1997. Biochemical and physiological evidence that carnosine is an endogenous neuroprotector against free radicals. Cell Mol. Neurobiol. 17:259-271.
Boldyrev, A. A., Dupin, A. M., Pindel, E. and Severin, S. E. 1988. Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89B:245-250.
Bran, A. M. 1975. Toxicology and biochemistry of BHA and BHT. JAOCS. 52:372-375.
Brown, C. E. 1981. Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88:245-256.
Brown, C. E. and Antholine, W. E. 1979. Chelation chemistry of carnosine. Evidence that mixed complexes may occur in vivo. J. Phys. Chem. 83:3314-3319.
Brown, C. E., Margolis, F. L., Williams, T. H., Pitcher, R. and Elgar, G. J. 1979. Carnosine binding: characterization of steric and charge requirements for ligand recognition. Arch. Biochem. Biophy. 193:529-542.
Brownson, C. and Hipkiss, A.R. 2000. Carnosine reacts with a glycated protein. Free Radical Biol. Med. 28(10):1564-1570.
Burton, R. F. 1978. Intracellular buffering. Respir. Physiol. 33:51-58.
Calcagni, A., Ciattini, P.G., Stefano, A. D., Dupre, S., Luisi, G., Pinnen, F., Rossi, D. and Spirito, A. 1999.Ψ(SO2NH) transition state isosteres of peptides. Synthesis and bioactivity of sulfonamido pseudopeptides related to carnosine. IL Farmaco 54:637-677.
Celia, C. G., Silva-Duarte, J. B., Da Ponte, M. and Enes Dapkevicius, L. N. 1998. Storage temperature effect on histamine formation in big eye tuna and skipjack. J. Food Sci. 63:644-647.
Chan, W. K. M. and Decker, E. A. 1994. Endogenous skeletal muscle antioxidants. Crit. Rev. Food Sci. Nutr. 34:403-426.
Chan, W. K. M., Decker, E. A. and Means, W. J. 1993. Extraction and activity of carnosine, a naturally occurring antioxidant in beef muscle. J. Food Sci. 58:1-4.
Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A. 1994. EPR spin-trapping studies of the hydroxyl radical scavenging activity of carnosine and related dipeptides. J. Agric. Food Chem. 42:1407-1410.
Chang, K., Chang, J., Shiau, C. Y. and Pan, B. 1998. Biochemical, microbiological, and sensory changes of sea bass (Lateolabrax japonicus) under partial freezing and refrigerated storage. J. Agric. Food Chem. 46(2):682-686.
Chasovnikova, L. V., Formazyuk, V. E., Sergienko, V. I., Boldyrev, A. A. and Severin, S. E. 1990. The antioxidative properties of carnosine and other drugs. Biochem. Int. 20:1097-1103.
Chen, H. M., Muramoto, K. and Yamauchi, F. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food. Chem. 43:574-578.
Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K. and Nokihara, K. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46:49-53.
Chiou, T. K., Shiau, C. Y. and Chai T. 1990. Extractive nitrogenous conponents of cultured milkfish and tilapia. Nippon Suisan Gakkaishi. 56:1313-1317.
Chitra, N. Wendakoon, C.N., Michiyo, M. and Morihiko, S. 1990. Comparison of non-volatile amine formation between the dark and white muscles of mackerel during storage. Nippon Suisan Gakkaishi 56:809-818.
Choi, S. Y., Kwon, H. Y., Kwon, O. B. and Kang, J. H. 2000. Hydrogen peroxide-mediated Cu,Zn-superoxide dismutase fragmentation: protection by carnosine, homocarnosine and anserine. Biochem. Biophys. Acta. 1472:651-657.
Cobb, B. F., Aoaniz, I. and Thomson, C. A. 1973. Biochemical and microbial studies on shrimp:volatile nitrogen and amino acid analysis. J. Food Sci. 38:341-347.
Concon, J. M., 1988. Metabolism of nonnutritive components in foods and related compounds. In: Food Toxicology 95-128. Marcel Dekker, New York.
Corti., A., Astancolle, S., Davalli, P., Bacciottini, F., Casti, A., Viviami, R. 1987. Polyamine distribution and activity of their biosynthetic enzymes in the Eouropean sea bass (Dicentirarchus labrax L.) compared to the rat. Comp. Biochem. Physiol., 88b:475-480.
Crush, K. G. 1970. Carnosine and related substances in animal tissues. Comp. Biochem. Physiol. 34:3-30.
Dahl, T. A., Midden, R. W. and Hartman, P. E. 1988. Some prevalent biomolecules as defenses against singlet oxygen damage. Photochem. Photobiol. 47:357-362.
Dalzell, P. 1993. The fisheries biology of flying fishes (Families: Exocoetidae and Hemiramphidae) from the Camotes Sea, Central Philippines. J. Fish Sci. 43:19-32.
Davey, C. L. 1960. The effects of carnosine and anserine on glycolytic reactions in skeletal muscle. Arch. Biochem. Biophy. 89:296-302.
Decker, E. A. 1995. The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinone as nonessential dietary antioxidants. Nutr. Rev. 53:49-58.
Decker, E. A. and Crum, A. D. 1991. Inhibition of oxidative rancidity in salted ground pork by carnosine. J. Food Sci. 56:1179-1181.
Decker, E. A. and Crum, A. D. 1993. Antioxidant activity of carnosine in cooked ground pork. Meat Sci. 34:245-253.
Decker, E. A. and Faraji, H. 1990. Inhibition of lipid oxidation by carnosine. JAOCS. 67:650-652.
Decker, E. A., Crum, A. D. and Calvert, J. 1992. Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J. Agric. Food Chem. 40:756-759.
Gaggelli, E., Basosi, R., Pogni, R. and Valensin, G. 1988. NMR investigation of the copper(II)-carnosine complexin water solution. J. Inorg. Biochem. 32:7-12.
Gigirey, B. B., Sousa, J. M. and Villa, T. G., Velazquez, J.B. 1998. Changes in biogenic amine and microbiological analysis in albacore muscle during frozen storage. J. Food Prot. 61:608-615.
Gloria, M. B. A., Daeschel, M. A., Craven, C. and Hilderbrand, K. S. 1999. Histamine and other biogenic amines in Albacore Tuna. J. Aqua. Food Prod. Tech. 8(4):55-69.
Gorelova, T. A. 1980. The feeding of young flyingfishes of the Exocoetidae and of the smallwing flyingfish, Oxyporhamphus micropterus of the family Hemiramphidae. J. Ichthyol. 20:60-71.
Halasz, A., Barath, A., Simon-Sarkaid, L. and Holzapfel, W. 1994. Biogenic amines and their production by microoganism in food. Trends Food Sci. Technol. 5: 42-19.
Harris, R. C., Marlin, D. J., Dunnett, M., Snow, D. H. and Hultman, E. 1990. Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comp. Biochem. Physiol. 97A:249-251.
Hayashi, M. 1954. Investigations on food poisoning caused by ordinary putrefaction- IV. Synergism between histamine and several biogenic amines. Yakugaku Zasski. 74:1148-1151.
Hilz, D. F., Dyer, W. J., Nowlan, S. and Dingle, J. R. 1971. Variation of biochemical quality indices by biological and technological factors. In “Fish Inspection and Quality Control”. Kreuzer, R. Ed. 191. Fishing Nesx Ltd., London.
Hipkiss, A. R., Brownson, C. and Carrier, M. J. 2001. Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups. Mechanisms Ageing Develop. 122:1431-1445.
Hipkiss, A.R., Michaelis, J. and Syrris, P. 1995. Non-enzymic glycosylation of the dipeptide L-carnosine. A potential anti-protein- cross-linking agent. FEBS Lett. 371:81-85.
Huang, W. H., Wang, Y. and Askari, A. 1992. Na, K-ATPase: Inactivation and degradation induced by oxygen radicals. Int. J. Biochem. 24:621-626.
Hughes, J. M. and Merson, M. H. 1976. Fish and shellfish poisoning. New Eng. J. Med. 295:1117-1112.
Hultin, H. O. 1985. Characteries of muscle tissue/ In “Food Chemistry”, Fennema, O. R. (Ed). 750-765. Marcel Dekker Inc. New York.
Hui, J. Y. and Taylor, S. L. 1985. Inhibition in vivo histamine metabolism in rats by foodborne and pharmacologic inhibitors of diamine oxidase, histamine N-methyltransferase, and monoamine oxidase. Toxicol. Appl. Pharmacol. 81:241-249.
Ikeda, T., Kimura, K., Hama, T. and Tamaki, N. 1980. Activation of rabbit muscle fructose 1,6-bisphosphatase by histidine and carnosine. J. Biochem. 87:179-185.
Ishizaki, S., Ishizaki, N. and Tanaka, M. 1997. Role of myosin light chains on thermal activation of flying fish actomyosin Mg super (2+)-ATPase. J. Tokyo Univ. Fish. 83(1-2):29-35.
Ito, M., Tanaka, T. and Suzuki, Y. 1990. Effect of N-(3-aminopropionyl) -L-histidineato zinc (Z-103) on healing and hydrocortisone-induced relapse of acetic acid ulcers in rats with limited food-intake-time. Japan. J. Pharmacol. 52:513-521.
L-histidineato zinc (Z-103) on healing and hydrocortisone-induced relapse of acetic acid ulcers in rats with limited food-intake-time. Japan. J. Pharmacol. 52:513-521.
Jackson, M. C., Kucera, C.M. and Lenney, F.F. 1991. Purification and properties of human serum carnosinase. Clin Chim Acta. 196: 193-205.
Johnson, P. and Hammer, J. L. 1989. Effects of L-1-methyl-L-histidine and the muscle dipeptides carnosine and anserine on the activities of muscle calpains. Comp. Biochem. Physiol. 94B:45-48.
Kansci, G., Genot, C., Meynier, A. and Gandemer, G. 1997. The antioxidant activity of carnosine and its consequwnces on the volatile profiles of liposomes during iron/ascorbate induced phospholipid oxidation. Food Chem. 60:165-175.
Kantha, S. S., Wada, S., Tanaka, H., Tajouchi, M., Watabe, S. and Ochi, H. 1996. Carnosine sustains the retention of cell morphology in continuous fibroblast culture subjected to nutrinal insult. Biochem. Biophys.Res. Comm. 223:278-282.
Kawachi, K., Inada, Y., and Azuma, A. 1993. Optimal flight path of flying fish. J. Theor. Biol. 163:145-159.
Khatchaturov, V. C. 1983. The digestive system of the flying fishes (Exocoetidae, Beloniformes). J. Ichthyol. 23:106-113.
Kim, S. H., Field, K. G., Chang, D. S., Wei, C. I. and An, H. 2001. Identification of bacteria crucial to histamine accumulation in Pacific mackerel during storage. J. Food Prot. 64: 1556-1564.
Kish, S. J., Perry, T. L. and Hansen, S. 1979. Regional distribution of homocarnosine, homocarnosine-carnosine synthetase and homocarnosinase in human brain. J. Neurochem. 32:1629-1636.
Kohen, R., Yamamoto, Y., Coudy, K. C. and Ames, B. N. 1988. Antioxidant activity of carnosine, homocarnosine and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA 85:3175-3179.
Konosu, S. and Yamaguchi, K. 1982. The flavor components in fish and shellfish. In “Chemistry & Biochemistry of Marine Food Products”. The AVI Publishing Co., Inc. Westport, Connecticut. P. 370-373.
Konosu, S., Watanabe, K. and Shimizu, T. 1974. Distribution of nitrogenous constituents in the muscle extracts of eight species of fish. Bull. Jap. Soc. Sci. Fish. 40: 909-914.
Konstantions, K., Kyriaki, L. and Nychas, G. J. E. 1999. Biogenic amine and sensory changes associated with the microbial flora of Mediterranean Gilt-head Sea Bream (Sparus aurata) stored aerobically at 0, 8, and 15℃. J. Food Prot. 62:398-402.
Kose, S., Quantick, P. and Hall, G. 2003. Change in the levels of histamine during processing and storage of fish meal. Animal Feed Sci. and Technol. 107:161-172.
Kyla-Puhju, M., Ruusunen, M., Kivikari, R. and Puolanne, E. 2004. The buffering capacity of porcine muscles. Meat Sci. 67:587-593.
Lakshmanan, P. T., Antony, P. D. and Gopakumar, K. 1996. Nucleotide degradation and quality changes in mullet (Liza corsula) and pearlspot (Etroplus suratensis) in ice and at ambient temperatures. Food Control. 7:277-283.
Lakshmanan, R., Shakila, R. J. and Jeyasekaran, G. 2002a. Changes in the halophilic amine forming bacterial flora during salt-drying of sardines. Food Res. Int. 35:541-546.
Lakshmanan, R., Shakila, R. J. and Jeyasekaran, G. 2002b. Survival of amine-forming bacteria during the ice storage of fish and shrimp. Food Microbiol. 19:617-625.
Lee, B. J. and Hendrick, D. G. 1997. Antioxidant effects of L-carnosine on liposomes and beef homogenates. J. Food Sci. 62:931-934.
Lee, B. J., Hendricks, D. G. and Cornforth, D. P. 1998. Antioxidant effects of carnosine and phytic acid in a model beef system. J. Food Sci. 63:394-398.
Lenney, J.F. 1976. Specificity and distribution of mammalian carnosinase. Biochim. Biophys. Acta. 429:214-219.
Lenney, J.F., George, R.P., Weiss, A.M., Kucera, C.M., Chan, P.W.H. and Inzler, G.S. 1982. Human serum carnosinase: characterization, distinction from cellular carnosinase, and activation by cadmium. Clin. Chim. Acta. 123:221-231.
Lenney, J.F., Peppers, S.C., Kucera-Orallo, C.M. and George, R.P. 1985. Characterization of human tissue carnosinase. Biochem. J. 228: 653-660.
Lenny, J. F. 1990. Separation and characterization of two carnosine splitting cytosolic dipeptidase from hog kidney (carnosinase and non-specific dipeptidase). Biol. Chem. 371: 433-440.
Lenny, J.F., George, R. P., Weiss, A. M., Kucera, C. M., Paul, W. H. Chan, P.W.H. and Gary, S.R. 1982. Human serum carnosinase: Characterization, distinction from cellular carnosinase, and activation by cadmium. Clin. Clim. Acta. 123:221-231.
Lin, C. Y. and Ko, W. C. 1997. Changes in several freshness indices of milkfish during ice storage. J. Agr. For. 46:1-9.
Longhurst, A. R. and Pauly, D. 1987. Ecology of Tropical Oceans. London: Academic Press.
MacFarlane, N., McMurray, J., O’Dowd, J., Dargie, H. J. and Miller, D. J. 1991. Synergism of histidyl dipeptides as antioxidants. J. Mol. Cell Cardiol. 23:1205-1207.
Mah, J. H., Han, K. H., Oh, Y. J., Kim, M. G. and Hwang, H. J. 2002. Biogenic amines in Jeotkals, Korean salted and fermented fish products. Food Chem. 79:239-243.
Mahon, R. 1986. Seasonal and interannual variability in abundance of flying fish. In Development Strategies for Flying Fish Fisheries of the Eastern Caaribbean (Mahon, R., Oxenford, H., Hunte, W., eds), 89-130. Intl Develop. Res. Centre Manuscript Report of Proc. of IDRC Workshop, Barbados, 22-23/10/85.
Manuela, V., Silva, D., Pinho, O., Ferreira, I., Plestilova, L. and Gibbs, P. A. 2002. Prodution of histamine and tyramine by bacteria isolated from Portuguese vacuum-packed cold-smoked fish. Food control 13:457-461.
Margolis, F. 1974. Carnosine in the primary olfactory pathway. Science 184:909-911.
Margolis, F. L. and Grillo, M. 1984. Carnosine, homocarnosine and anserine in vertebrate retinas. Neurochem. Int. 6:207-209.
Matoba, T., Kuchiba, M., Kimura, M. and Hasegawa, K. 1988. Thermal degradation of flavor enhancers, inosine 5’-monophosphate, and guanosine 5’-monophosphate in aqueous solution. J. Food Sci. 53:1156-1159.
Matsumoto, M. and Yamanaka, H. 1990. Post-mortem biochemical changes in the muscle of kurumma prawn during storage and evaluation of the freshness. Nippon Suisan Gakkaishi 56:1145-1149.
Mavromatis, P. and Quantick, P. 2002. Modification of niven’s medium for the the enumeration of histamine-forming bacteria and discussion of the parameters associated with its use. J. Food Prot. 65: 546-551.
McFarland, G.A. and Hollidaey, R. 1994. Retardation of senescence of cultured human diploid fibroblasts by carnosine. Exp. Cell Res. 212:167-175.
Mendes, R. 1999. Chang in biogenic amines of major Portuguese bluefish species during storage at different temperatures. J. Biochem. 23:33-43.
Mietz, J. L. and Karmas, E. 1977. Chemical quality index of canned tuna as determined by high-performance liquid choromatographic determination. J. chromatogr. 591:175-180.
Miyata, T., Inagi, R., Asahi, K., Yamada, Y., Horie, K., Sakai, H. and Kurokawa, K. 1998. Generation of protein carboxyls by glycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids. FEBS Letters 437:24-28.
Murata, Y., Henmi, H. and Nishioka, F. 1994. Extractive components in the skeletal muscle from ten different species of scombroid fishes. Fish. Sci. 60:473-478.
Murphey, W. H., Lindmark, D. G., Patchen, L. I., Housler, M. E., Harrod, K. and Mosovich, L. L. 1973. Serum carnosinase deficiency concomitant with mental retardation. Pediat. Res. 7: 601-606.
Murphey, W.H., Patchem, L.I. and Lindmark, D.G. 1972. Carnosinase: a fluorometric assay and demonstration of two electrophoretic forms in human tissue extracts. Clin. Clim. Acta. 42: 309-314.
Nagai, K. and Suda, T. 1988. Realization of spontaneous healing function of carnosine. Meth. Find. Exp. Clin. Pharmacol. 10:497-507.
Ochiai, Y., Kariya, Y. and Hashimoto, K. 1990. Postmortem diffusion of taurine and free histidine between ordinary and dark muscle of mackerel during ice storage. Bull. Jap. Soc. Sci. Fish. 56:1017-1021.
O’Dowd, J. J., Cairns, M. T., Trainor, M., Robins, D. J.and Miller, D. J. 1990. Analysis of carnosine, homocarnosine, and other histidyl derivatives in rat brain. J. Neurochem. 55:446-452.
Ogata, H. Y. and Murai, T. 1994. White muscle of masu salmon, Oncorhynchus masou masou, smolts possesses a strong buffering capacity due to a high level of anserine. Fish. Physiol. Biochem. 13:285-293.
Ogata, H. Y., Konno, S. and Silverstein, J. T. 1998. Muscular buffering capacity of the parr and smolts in Oncorhynchus masou. Aquaculture 168:303-310.
Okamoto, K. I., Yasui, T., Kawaguchi, H., Ama, T. and Hidaka, J. 1988. Unusual coordination mode carnosine (ß-alanyl-L- histidine) in a cobalt (III) complex. Chem. Lett. 11:335-338.
Okuma, E. and Abe, H. 1992. Major buffering constituents in animal muscle. Comp. Biochem. Physiol. 102A:37-41.
Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35:771-775.
Parin, N. V. and Beljanina, T. N. 2000. Comparative description of two close Atlantic flying fish species--Cheilopogon heterurus and C. melanurus (Exocoetidae). J. Ichthyol. 43:213-229.
Pegova, A., Abe, H. and Boldrev, A. 2000. Hydrolysis of carnosine and related compounds by mammalian carnosinase. Comp. Biochem. Physiol. 127B:443-446.
Perry, T. L., Hansen, S. and Love, D. 1968 Serum-carnosinase deficiency in carnosinaemia. Lancet I: 1229-1230.
Perry, T. L., Hansen, S., Tischler, B., Bunting, R. and Berry, K. 1967. Carnosinemia: metabolic disorder with neurologic disease and mental defect. New Eng. J. Med. 277: 1219-1227.
Potts, A.C., Thomas, A.D. and Nichols, E. 2003. An economic and social assessment of the flying fish (pelagic) fishery of Tobago, Trinidad and Toba. Proc. Gulf Caribb. Fish. Inst. 54:635-649.
Preston, J.E., Hipkiss, A.R., Himsworth, D.T.J., Romero, I.A. and Abbott, J.N. 1998. Toxic effects of β-amyloid on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and β-alanine. Neurosci. letters 242:105-108.
Quinn, P. J., Boldyrev, A. A. and Formazuyk, V. E. 1992. Carnosine: its properties. functions and potential therapeutic applications. Mol. Aspects Med.13:379-444.
Rao, K. S. and Basheeruddin, S. 1973. Unusual catches of the flying fish, Parexocoetus brachypterus (Richardson) in inshore waters at Madras. Indian J. Fish. 20:629-634.
Ren, H., Hayashi, T., Endo, H. and Watanabe, E. 1993. Quality evaluation of seasoning extracts on the basis of their β-buffer capacity and amino acid composition. Nippon Suisan Gakkaishi 59:177-182.
Ritchie, A. H. and Kackie, I. M. 1979. The formation of diamines and polyamines during storage of marckerel (Scomber scombrus). Adu. Fish. Sci. 47:1311-1317.
Russell, F. E. and Maretic, Z. 1986. Scombroid poisoning: Mini- review with case histories. Toxicon. 24:96-97.
Saito, T., Arai, K. and Matsuyoshi, M. 1959. A new method for estimating the freshness of fish. Bull. Jap. Soc. Sci. Fish. 24:749.
Sanceda, N. G., Suzuki, E., Ohashi, M. and Kurata, T. 1999. Histamine behavior during the fermention process in the manufacture of fish sauce. J. Agric. Food Chem. 47:3596-3600.
Sakaguchi, M., Murata, M. and Kawai, A. 1984. Changes in free amino acid content in juvenile mackerel (Scomber quinqueradiata) and mackerel (Scomber japonicus). Agric. Biol. Chem. 46:2857-2858.
Seiler, N., Bolkeniuns, F. N. and Rennert, O. M. 1981. Intercon- verbolism catabolism and elimination of polyamines. Med. Biol. 59:334-346.
Sharonov, B. P., Govorova, N. J. and Lyziova, S. N. 1990. Carnosine as a potential scavenger of oxidants generated by stimulated neutrgphils. Biochem. Int. 21:61-68.
Shi, X., Dalal, N. S. and Kasprzak, K. S. 1992. Generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of oligopeptides. Arch. Biochem. Biophy. 299:154-162.
Shiau, C.-Y., Pong, Y.-J., Chiou, T.-K. and Tin, Y.Y. 2001. Effect of starvation on free histidine and amino acids in white muscle of milkfish Chanos chanos. Comp. Biochem. Physiol. 128B:501- 506.
Shiau, C.-Y., Pong, Y.-J., Chiou, T.-K. and. Chai, T. 1996. Free amino acids and nucleotide-related compounds in milkfish (Chanos chanos) muscles and viscera. J. Agric. Food Chem. 44:2650- 2653.
Shiau, C.-Y., Pong, Y.-J., Chiou, T.-K. and. Chai, T. 1997. Effect of growth on the levels of free histidine and amino acids in white muscle of milkfish (Chanos chanos). J. Agric. Food Chem. 45:2103-2106.
Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945-948.
Silva, C. C. G., Ponte, D. J. and Dapkevicius, M. L. N. E. 1998. Storage temperature effect on histamine formation in big eye tuna and skipjack. J. Food Sci. 63:644-647.
Skulachev, V. P. 1992. Carnosine and anserine as specialized pH-buffers- hydrogen ion carriers. Biokhimiia. 57:1311-6.
Snyder, S. H. 1980. Brain peptides as neurotransmitters. Science 209:976-983.
Somero, G. N. 1981. pH-temperature interactions on proteins: principles of optimal pH and buffer system design. Mar. Biol. Lett. 2:163-178.
Stansby, M, E. 1963. Industrial Fishery Technology. 341. Reinhold Publishing Co., New York.
Stratton, J. E., Hutkins, R. W. and Taylor, S. L. 1991. Biogenic amines in cheese and other fermented foods: a review. J. Food Prot. 54 :460-470.
Suyama, M. and Shimizu, T. 1982. Buffering capacity and taste of carnosine and its methylated compounds. Bull. Jap. Soc. Sci. Fish. 48:89-95.
Suyama, M., Hirano, T. and Suzuki, T. 1986. Buffering capacity of free histidine and its related dipeptides in white and dark muscles of yellowfin tuna. Nippon Suisan Gakkaishi 52:2171-2175.
Suyama, M., Suzuki, T., Maruyama, M. and Satio, K. 1970. Determination of carnosine, anserine, and balenine in the muscle of animal. Bull. Jap. Soc. Sci. Fish. 36:1048-1053.
Suzuki, T., Hirano, T. and Shirai, T. 1990. Distribution of extractive nitrogenous constituents in white and dark muscle of fresh-water fish. Comp. Biochem. Physiol. 96:107-111.
Suzuki, T., Hirano, T. and Suyama, M. 1987a. Changes in extractive components of white and dark meats of bigeye tuna by thermal processing at high temperature of F0 value of 4. Nippon Suisan Gakkaishi 53:1633-1636.
Suzuki, T., Hirano, T., Suyama, M. 1987b. Free imidazole compounds in white and dark muscles of migratory marine fish. Comp. Biochem. Physiol. 87B: 615-619.
Szebedinszky, C. and Gilmour, K. M. 2002. The buffering power of plasma in brown bullhead (Ameiurus nebulosus). Comp. Biochem. Physiol. 131:171-183.
Tao, S., Long, A., Xu, F. and Dawson, R. W. 2002. Copper Speciation in the Gill Microenvironment of Carp (Cyprinus carpio) at Various Levels of pH. Ecotoxicol. Environ. Saf. 47:59-64.
Taylor, S. L. 1986. Histamine food poisoning: toxicology and clinical aspects. CRC Crit. Rev Toxicol. 17: 91-128.
Taylor, S. L. 1990. Other microbial intoxication. In: Foodborne Disease. (Edited by Cliver, D. O.) 160-171. Academic Press, London.
Taylor, S. L. and Lieber, E. R. 1979. In vitro inhibition of rat intestinal histamine-metabolizing enzyme. Fd. Cosmet. Toxicol. 17:237- 240.
Terplan, K. L. and Cares, H. L. 1972. Histopathology of the nervous system in carnosinase enzyme deficiency with metal retardation. Neurology 22: 644-645.
Tsuji, K. 1982. β-titranor, a device for recording of buffer capacity curves: I. Theory and apparatus. Agric. Biol. Chem. 46:677-682.
Uchiyama, H. and Ehira, S. 1974. Relationship between freshnessand acid-soluble nucleotides in asepetic cod and yellowtail muscle during ice storage. Bull. Tokai. Reg. Fish. Res. Lab. 78:23-35.
Vanwanade, A. 1988. Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production. Comp. Biochem. Physiol. 91B:207-228.
Wade, A. M. and Tucker, H. N. 1998. Antioxidant characteristics of L-histidine. J. Nutr. Biochem. 9:308-315.
Watabe, S., Kamal, M. and Hashimoto, K. 1991. Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. J. Food Sci. 54:151-153 & 171.
Wei, C. I., Chen. C. M., Koburger, J. A., Otwell. W. S. and Marshall, M. R. 1990. Bacterial growth and histamine production on vacuum packaged tuna. J. Food Sci. 55:59-63.
Wendakoon, C. N., Murata, M. and Sakaguchi, M. 1990. Comparison of nonvolatile amine formation between the dark and white muscle of mackerel during storage. Nippon Suisan Gakkaishi, 56:809-818.
Wendakoon, C. N. and Sakaguchi, M. 1992. Non-volatile amine production in mackerel muscle during growth of different bacterial species. J. Food Hyg. Soc. Jap. 33: 39-45.
Whysner, J., Wang, C. X., Zang, E., Iatropoulos, M.J. and Williams, M. 1994. Dose response of promotion by butylated hydroxyanisole in chemically initiated tumours of the rat forestomach. Food Chem. Toxic. 32:215-222.
Willi, S. M., Zhang, Y., Hill, J. B., Phelan, M.C., Michalis, R. C. and Holden, K. R. 1997. A deletion in the long arm of chromosome 18 in a child with serum carnosinase deficiency. Pedia. Res. 41: 210-213.
Wilson, B. R., Pearson, A. M. and Shorland, F. B. 1976. Effect of total lipids and phospholipids on warmed-over flavor in red muscle and white muscle from several species as measured by the thiobarbituric acid analysis. J. Agric. Food Chem. 24:7-11.
Yamanaka, H., Shiomi, K., Kikuchi, T. and Okuzumi, M. 1984. Concentrations of polyamines in fresh-water fishes. Bull. Jap. Soc. Sci. Fish. 50:695-701.
Yatsunami, K. and Echigo, T. 1993. Changes in the number of halotolerant histamine-forming bacteria and contents of non-volatile amines in sardine meat with addition of NaCl. Nippon Suisan Gakkaishi 59: 123-127.
Yen, G. C. and Hsieh, C.L. 1991. Simultaneous analysis of biogenic amines in canned fish by HPLC. J. Food Sci. 56 : 158-160.
Yoshikawa, T., Naito, Y., Tanigawa, T., Yoneta, T. and Kondo, M. 1991. The antioxidant properties of a novel zine-carnosine chelate compound, N-(3-aminopropionyl)-L-his-tidinato zine. Biochem. Biophys. Acta. 1115:15-22.
Zhou, S. and Decker, E. A. 1999. Ability of carnosine and other skeletal muscle components to quench unsaturated aldehydic lipid oxidation products. J. Agric. Food Chem. 47:51-55.
丁任法,2003。黃鰭鮪及潮鯛生魚片貯藏中鮮度及風味品質之變化。國立台灣海洋大學食品科學研究所碩士學位論文,基隆。
中島宣郎、市川恆平、鐮田政喜、藤田榮一郎,1961。5’-リボヌクレチドの食品化學的研究,食品中5’-リボヌクレチドについて(その2)魚貝肉および食肉中5’-リボヌクレチド,農化,35:803-808。
尤心正,1999。飛魚卵脂質成分及其低溫貯藏中之變化。國立台灣海洋大學食品科學研究所碩士學位論文,基隆。
王侯,1983。飛魚與柴魚。漁友月刊 (6)4:35-36。
田哲益(達西烏拉彎.畢馬),2002。台灣的原住民-達悟族,台原出版社。
余光弘,1998。臺灣原住民史雅美族篇。中央研究院民族學研究所,網站http://www.sinica.edu.tw。
沈世傑,1993。台灣魚類誌。國立台灣大學動物學系印行,pp.188-195。
邱思魁,1995。水產品鮮度及測定方法。八十五年度於市場檢驗人員訓練班講義pp. 31-47,台灣省水產試驗所編印。
邱思魁、游昭玲、蕭泉源,1995。虱目魚貯藏中鮮度及呈味成分之變化。食品科學,22:46-58。
邱思魁、林君霏、蕭泉源,1996。養殖文蛤儲藏中的鮮度品質變化。中國營養學會雜誌,21:95-109。
林宜鉦,1959。談飛魚。中國水產月刊 47:13。
林容如,2001。新興養殖魚類化學與營養組成及鰻肉貯存期間肌肽變化之探討。國立台灣海洋大學食品科學研究所碩士學位論文,基隆。
邵廣昭,1996。台灣常見魚介貝類圖說(下)一魚類。台灣省漁業局印行,p.55。
哈帽,2000。東海岸豐濱的飛魚季節來臨了。台灣原住民月刊電子報(5),網站http://www.kgu.com.tw。
洪建德,1999。海面飛躍的梭-飛烏。漁業推廣155:7。
孫瑞茂,2002。飛魚乾加工法之研究。國立屏東科技大學食品科學系碩士學位論文,屏東。
徐瀛洲,1990。蘭嶼之美。行政院文化建設委員會印行,pp. 26-35。
郭鴻鈞,1996。低水份活性食品之指標微生物。海大魚推21:24-25
張燦穩,1991。蘭嶼椰油村雅美族人漁場利用型態。國立台灣師範大學地理研究所碩士學位論文,台北。
陳宏成,2002。養殖海鱺生魚片及煙燻製品品質衛生之探討。國立台灣海洋大學食品科學研究所碩士學位論文,基隆。
陳春輝,1978。台灣近海飛魚分類。中國文化學院海洋研究所碩士論文,台北。
須山三千三、鴻巢章二,1987。水產食品學,恆星社厚生閣,東京,日本。
許瑞君、吳昭儀、陳淑敏,2004。蘭嶼的神話傳說。關懷離島系列三-日出之島蘭嶼影像展,p. 74。
黃哲崇,1986。台灣東部漁業資源的開發與利用。中國水產月刊406:28-36。
黃議鋒,1997。虱目魚游離組胺酸之緩衝能力及其應用於鮮度品質之探討。國立台灣海洋大學食品科學研究所碩士學位論文,基隆。
楊碧月,2002。蘭嶼飛魚季-飛魚的故鄉。社團法人台灣環境資訊協會訊電子報,網站http://e-info.org.tw。
達屴,2001。東海岸阿美族的燻飛魚乾。台灣原住民月刊電子報(19),網站http://www.kgu.com.tw。
漁業署,2003。台灣地區漁業年報。農委會漁業署印行。
劉振鄉,1997。深具觀光潛力的蘭嶼飛魚文化。漁業推廣125:34-36。
衛惠林、劉斌雄,1962。蘭嶼雅美族的社會組織。中央研究院民族學研究所專刊113-126。
鄭學淵,2002。生物胺-水產品品質新指標。國際漁業資訊112:49-55。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top