跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪雅芬
研究生(外文):Ya-Fen Hong
論文名稱:蕃茄葉中cystatin之基因選殖
論文名稱(外文):Molecular cloning of cystatin genes from tomato leaves (Lycopersicon esculentum)
指導教授:江善宗 吳如雯
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:85
中文關鍵詞:硫氫蛋白酶抑制劑
外文關鍵詞:cystatin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Cystatin是植物受外來病菌、蟲害、機械傷害時,所引發自我保護機制而產生抑制cysteine這類蛋白酶的抑制劑。一些植物cystatin兼具有三個動物cystatin superfamily的特性,包括缺乏雙硫鍵結或是半胱胺酸的殘基(the stefin)、胺基酸序列最類似於the cystatin以及具有多重結構域(multidomain)的特性(the kininogen)。這些多重結構域的cystatins已在馬鈴薯、蕃茄、豇豆、向日葵等植物中發現。
目前馬鈴薯cystatin(potato multicystatin, PMC)(Solanum tuberosum)的序列已完全解出,而文獻指出可能和PMC具有高度相似性的蕃茄cystatin(tomato multicystatin, TMC),則尚未完全剖析。故本研究主要是由蕃茄葉(Lycopersicon esculentum UC204A)中選殖cystatin基因,並分析其序列。首先由蕃茄幼葉中抽取蕃茄的genomic DNA,並依據已知TMC序列設計一段正義(sense)LeCPIgs1與LeCPIas2反義(antisense)核酸引子,進行genomic PCR來建構TMC的genomic library,再從已知TMC序列設計的反義引子LeCPIas4, LeCPIas5,配合adaptor上的引子AP1、AP2,進行genomic walking。從蕃茄多重cystatin的結構域7及8中發現,每一cystatin結構域只含一intron,分別為102 bp(intron 7)及78 bp(intron 8),intron的位置均位在cystatin的��-helix保留區(LARFAVQDYNKXX)及活性區QxVxG之間。利用馬鈴薯未轉錄區(5’-UTR)設計引子UTR3和TMC的5’端蕃茄設計LeCPIsp1,得到了一個完整的TMC-1(tomato multicystasin domain 1)及TMC-2(只含有LARFAV的部分)及TMC intron-1。經由TMC intron-1和PMC intron-1的比對,發現TMC與PMC在intron-1的鹼基數目都不是3的倍數(而TMC的intron-7、intron-8以及PMC其他段的intron都為3的倍數)。
TMC-1與TMC-2分別與PMC-1及PMC-2序列的相質性為82%及77%,與蕃茄已知序列TMC-6, 7, 8(AAF23128)及7, 8 domain相質性為59-66%。在TMC-1和PMC各個domain中出現保留區LARFAV和活性區QxVxG及N端保留區Gly3、Gly4和C端Trp77,與其他植物cystatin相似。值得注意的是TMC-1在活性區QxVxG之前的序列為QKNGSSLEFEKVLKVKK和已發表的TMC- 6, 7, 8 domain共同出現的AHLEYVENLNVKE有很大的不同。由親源樹狀關係顯示出TMC-1和TMC-2與PMC-1及PMC-2的親緣關係較TMC的其他domain來的接近。再以Swiss-model系統進行TMC-1三級結構預測時,也發現其結構上所對應的胺基酸和文獻所歸納植物cystatin結構類似。由結論得知TMC和PMC在exon和intron的序列上具有高度相似性。
Cystatins are inhibitors of cysteine proteases for defensive strategies against insect, fungi attack or mechanical wounding. Some plant cystatins possess all the characteristics of animal cystatin superfamily, including lack of disulfide bonds or cysteine residues like the stefin, high degree of homology with the member of cystatin and containing repeat cystatin-like domains similar to the kininogen.
The genomic DNA sequences for potato cystatin (PMC) have been characterized. However a gene coding for tomato cystatin (TMC) which posseses similar biochemical properties to PMC has not been investigated. This study focuses on molecular cloning and characterization of cystatin genes from tomato leaves (Lycopersicon esculentum). The genomic DNA of tomato cystatin was isolated from tomato leaves UC204A. The genomic library of tomato cystatin was constructed by genomic PCR with the primers of LeCPIgs1 and LeCPIas2 designed from TMC gene sequences. In addition, genomic walking from UC204A genomic libraries is investigated using gene-specific primers LeCPIas4, LeCPIas5 designed from TMC gene sequences. The results showed that one intron occurs in each of tomato cystain-coding sequences, e.g. 78 and 102 bp in TMC domain 7 and 8, separately. A intron in each of tomato cystatin-like domains is located at the same region between ��-helix (LARFAVQDYNKXX) and catalytic QxVxG motif. A complete TMC-1 (tomato multicystatin domain 1) and partially TMC-2 are acquired by using the primers designed from PMC 5’ untranslation region and TMC 5’ end of DNA sequence. When compared with TMC and PMC introns, demonstrates the intron-1 in TMC and PMC are both not a multiple of three.
TMC-1, TMC-2 and PMC-1, PMC-2 have high homology of 82% and 77% amino acid identitiy, separately.TMC-1 and TMC-6, 7 and 8 has low homology of 59-66% amino acid identity. TMC displayed a conserved region LARFAV, a catalytic QxVxG motif, Gly3, Gly4 in the N-terminal region and Trp77 in the C-terminal region, which are similar to other plant cystatins. The front TMC-1 sequence of the QxVxG motif (QKNGSSLEFEKVLKVKK) is noticeable differently with published TMC 6, 7, 8 domains (AHLEYVENLNVKE). A phylogenetic analysis demonstrated that TMC-1 and TMC-2 are closer to PMC-1 and PMC-2 compared to TMC 6, 7, and 8 domains. The structure of TMC-1 is analogous to several plant cystatins analyzed by Swiss-model system. In conclusion, it is shown high similarity of TMC and PMC in the DNA sequence with exons and introns.
目錄
頁數
中文摘要-----------------------------------------------------------------------І
英文摘要---------------------------------------------------------------------ІІI
縮寫表-------------------------------------------------------------------------V壹、研究動機與目的-------------------------------------------------------VI
貳、文獻整理------------------------------------------------------------------1
植物防禦反應之機制--------------------------------------------------1
蕃茄防禦蛋白質合成的控制機制-----------------------------------1
(1) 蕃茄植物受傷信號(wounding signals)---------------------------2
(2) 蕃茄植物受傷信號途徑(wounding signaling pathway)--------3
(3) 蕃茄植物受傷誘導的防禦蛋白質(systemic wounding
response proteins) -----------------------------------------------------4
Cystatin的介紹----------------------------------------------------------5
Cystatin蛋白質結構的研究-------------------------------------------7
植物的Cystatin-------------------------------------------------------10
單一結構域(single-domain)的植物cystatin-----------------------12
水稻cystatin(oryzacystatins)-----------------------------------------12
具有多重domain的植物cystatin-------------------------------------12
(1)馬鈴薯cystatin(potato cystatin)--------------------------------12
(2)向日葵cystatin(sunflower cystatin)----------------------------13
(3)豇豆cystatin(cowpea cystatin)----------------------------------14
(3)蕃茄cystatin(tomato cystatin)----------------------------------15
以生物技術將蛋白酶抑制劑(PI)應用在作物抗蟲-------------16
參、材料與方法--------------------------------------------------------------18
材料與藥品試劑-----------------------------------------------------18
儀器設備--------------------------------------------------------------19
實驗方法--------------------------------------------------------------19
1.誘導蕃茄幼葉產生cystatin----------------------------------------19
2.蕃茄葉組織total RNA萃取----------------------------------------20
3.RNA電泳-------------------------------------------------------------20
4.mRNA抽取----------------------------------------------------------21
5.first strand cDNA的製備-------------------------------------------22
6.蕃茄葉DNA之抽取------------------------------------------------22
7.以PCR方式建立蕃茄genome libraries--------------------------23
8.蕃茄葉中cystatin基因引子(primers)的設計--------------------24
9.聚合酵素鏈鎖反應(Polymerase chain reaction, PCR)----------25
10.瓊脂糖電泳(agarose gel electrophoresis-------------------25
11.DNA片段的分離與純化-----------------------------------------25
11.pGEM-T質體的黏接(ligation)與轉形作用--------------------26
12.拓璞(TOPO)質體的黏接及轉形--------------------------------26
13.環狀質體(plasmid)的抽取與分離-------------------------------28
14.限制酶(restriction enzyme)的剪切作用------------------------28
15.DNA定序-----------------------------------------------------------28
16.序列分析------------------------------------------------------------28
肆、結果與討論--------------------------------------------------------------29
1.蕃茄cystatin基因genomic DNA片段之選殖及分析-------------29
(1)Genomic DNA之intron選殖及分析---------------------------29
(2)Genomic DNA之全長序列選殖-----------------------------------30
2.蕃茄cystatin基因cDNA片段之選殖及分析-----------------------33
3.TMC-1蛋白質基因庫比對與三級結構模擬-------------------35
伍、結論----------------------------------------------------------------------38
陸、未來展望----------------------------------------------------------------39
TMC的5’端不轉譯區域(5’-UTR)之研究--------------------------39
TMC的3’端不轉譯區域(3’-UTR)之研究--------------------------40
TMC在生物技術上的應用------------------------------------------40
蕃茄葉中的cystatin應用在魚漿加工煉製品的形膠能力-------41
柒、參考文獻----------------------------------------------------------------43
附錄---------------------------------------------------------------------------57
圖與表------------------------------------------------------------------------60




圖表目錄
圖一、Octadecanoids在物體內誘導產生防禦反應的關係圖---------60
圖二、(A)雞蛋白cystatin與(B)稻米oryzacystaitn-І的三級結構----61
圖三、PMC各個domain的胺基酸序列之比對-------------------------62
圖四、不同煉合溫度下放大TMC的genomic DNA片段-----------------63
圖五、pGEM-T Easy Vector圖譜與其上限制酶切位------------------64
圖六、TMC genomic walking的流程圖----------------------------------65
圖七、以genomic libraies為模版,配合引子AP1, AP2/ LeCPIas4, LeCPIas5 擴增genomic DNA之電泳圖--------------------------66
圖八、TMC的intron-7及intron-8核酸序列比對----------------------67
圖九、以genomic libraries為模版,配合引子AP1, AP2 / LeCPIas4, LeCPIas5擴增genomic DNA之電泳圖--------------------------68
圖十、以限制酶酵素(EcoRI)水解TMC genomic DNA----------------69
圖十一、以引子UTR1, 2, 3/ LeCPIsp1擴增genomic DNA之電泳圖----70
圖十二、TMC-1和PMC-1胺基酸序比對-------------------------------71
圖十三、TMC-2和PMC-2胺基酸序列比對----------------------------71
圖十四、TMC-1和TMC-6, 7, 8胺基酸序列比對----------------------72
圖十五、MJ誘導蕃茄葉的total RNA電泳圖---------------------------73
圖十六、以引子LeCPIsn1 / LeCPIas5擴增cDNA之電泳圖--------------74
圖十七、PCRII-TOPO Vector圖譜與其上限制酶切位----------------75
圖十八、以colony PCR確認接入拓蹼載體的cDNA------------------76
圖十九、以限制酶(EcoRI)水解接入拓蹼載體上的cDNA------------77
圖二十、利用電腦預測TMC-1三級結構及其所對應的胺基酸-----78
圖二十一、TMC-1與TMC-2及其他物種cystatin胺基酸之分子親緣樹狀圖------------------------------------------------------------79
圖二十二、TMC-1與TMC-2及其他物種cystatin胺基酸之比對---80
圖二十三、TMC與其他cystatin物種區域氨基酸相似度的評分圖----85
Abe, M., Abe, K., Kuroda, H., Arai, S., 1992. Corn kernel cysteine protease inhibitor as a novel cystatin superfamily member of plant origin. Eur J Biochem 209, 933-937.
Abe, K., Arai., S., 1985. Purification of a cysteine proteinase inhibitor from rice, Oryza sativa L. Japonica. Agric Biol Chem 49, 3349-3350
Abe, K., Emori, Y., Kondo, H., Suzuki, K., Arai, S., 1987a. Molecular
cloning of a cysteine proteinase inhibitor of rice (Oryzacystatin). J Biol Chem 262, 16793-16797.
Abe, K., Hiroto, K., Arai, S., 1987b. Purification and characterization of a rice cysteine proteinase inhibitor. Agric Biol Chem 51, 2763-2765.
Abe, K., Emori, Y., Kondo, H., Arai, S., Suzuki, K., 1988. The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of cystatin superfamily. J Biol Chem 236, 7655-7659.
Akers, C.P., Hoff J.E., 1980. Simultaneous formation of chymopapain inhibitor activity and cubical crystals in tomato leaves. Can J Bot 58, 1000-1003.
Amnadana, S., Schippper, B., Wilder, JB., Outchkourov, N., Udayakumar, M., Jongsma, M.A., 2003. Cloning, Functional expression in Pichia pastoris, and purification of potato cystatin and multicystatin. J Biosci and Bioengi 95, 118-123.
Arai, S., Watanabe, H., Kondo, H., Emori, Y., Abe, K., 1991. Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. J Biochem 109, 294-298.
Arai, S., Matsumoto, I., Emori, Y., Abe, K., 2002. Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J Agric Food Chem 50, 6612-6617.
Barrett, A.J., 1981. Cystatin, the egg white inhibitor of cysteine proteinases. Methods in Enzymology 80, 771-778.
Barrett, A.J., 1987. The cystatins: a new class of peptidase inhibitors. Trends Biochem Sci 12, 193-196.
Baydoun, E.A.H., Fry, S.C., 1985. The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone. Planta 165, 269-276.
Bell, H.A., Down, E.C., Down, R.E., Ford, L., Marris, G.C., Edwards, J.P., Gatehouse, J.A., Gatehouse, A.M.R 2001. Effect of dietary cowpea trypsin inhibitors on the growth and development of the tomato moth Lacanobia oleracea and on the success of the gregarious ectoparasitoid Eulophus pennicornis. Pest Management Sci (UK) 57, 57-65.
Bergey, D.R., Howe, G.A., Ryan, C.A., 1996. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci (USA) 93, 12053-12058.
Birkenmeier, G.F., Ryan, C.A., 1998. Wound signaling in tomato plants: evidence that ABA is a primary signal for defense gene activation. Plant Physiol 117, 687-693.
Bishop, P.D., Pearce, G., Bryant, J.E., Ryan, C.A., 1984. Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves: Identity and activity of poly- and oligogalacturonide fragments. J Biol Chem 259, 13172-13176.
Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., Delledonne, M., 2003. AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem 270, 2593-2604.
Bode, W., Enbh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., Turk, V., 1988. The 2.0 Å X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J 7, 2593-2599.
Bolter, C.J., 1993. Methyl jasmonate induces papain inhibitor(s) in tomato leaves. Plant Physiol 103, 1347-1353.
Boulter, D., Harvey, P.J., 1985. Accumulation, structure and utilization of tuber storage proteins with particular reference to Dioscorea rotundata. Physiol Veg 23, 67-74.
Bowles, D.J., 1990. Defense related proteins in higher plants. Annu Rev Biochem 59, 873-907.
Brzin, J., Ritonja, A., Popovic, T., Turk, V., 1990. Low molecular mass protein inhibitor of cysteine proteinases from soybean. Biol Chem Hoppe-Seyler 371, 167-170.
Chen, G.H., Tang, S.J., Chen, C.S., Jiang, S.T., 2001. High-level production of recombinant chicken cystatin by Pichia pastoris and its application in mackerel surimi. J Agric Food Chem 49, 641-646.
Constabel, C.P., Bergey, D.R., Ryan, C.A., 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci (USA) 92, 407-411.
De-Leo, F., Bonade-Bottino M., Ceco L.R., Gallerani. R., Jouanin. L., 2001. Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem. Mol Biol (UK) 31, 593-602.
Di, P.A., Roncero, M.I.G., 1996. Endopolygalacturonase from Fusarium oxysporum f. sp. Lycopersici: purification, characterization, and production during infection of tomato plants. Phytopathology 86, 1324-1330.
Diop, N.N., Kidric, M., Repellin, A., Gareil, M., d'Arcy-Lameta A., Pham, Thi A.T., Zuily-Fodil Y., 2004. A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett 577, 545-550.
Doares, S.H., Syovets, T., Weiler, E.W., Ryan, C.A., 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci (USA) 92, 4095-4098.
Doi-Kawano, K., Kouzuma, Y., Yamasaki, N., Kimura, M., 1998. Molecular cloning, functional expression, and mutagenesis of cDNA encoding a cysteine proteinase inhibitor from sunflower seeds. J Biochem 124, 911-916.
El-Shamei, Z., Wu, J.W., Haard, N.F., 1996. Influence of wound injury on accumulation of proteinase inhibitors in leaf and stem tissues of two processing tomato cultivars. J Food Biochem 20, 155-171.
Farmer, E.E., Caldelari, D., Pearce, G., Walker-Simmons, M.K., Ryan, C.A., 1994. Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiol 106, 337-342.
Farmer, E.E., Moloshok, T.D., Saxton, M.J., Ryan, C.A., 1991. Oligosaccharide signaling in plants: Specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem 266, 3140-3145.
Farmer, E.E., Ryan, C.A., 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4, 129-134.
Felton, G.W., Korth, K.L., 2000. Trade-offs between pathogen and herbivore resistance. Curr.Op. Plant Biol 3, 309-314.
Fujimura, M., Minami, Y., Watanabe, K., Tadera, K., 2003. Purification, characterization and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosci Biotechnol Biochem 67, 1636-1642.
Gatehouse, A.M., Davison, G.M., Newell, C.A., Merryweather, A., Hamilton, W.D.O., Burgess, E.P.J., Gilbert, R.J.C., Gatehouse, J.A., 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials Mol Breed 3, 49-63.
Gatehouse, A.M., Norton, E., Davison, G.M., Babbe, S.M., Newell, C.A., Gatehouse, J.A., 1999. Digestive proteolytic activity in larvae of tomato moth, Lacanobiaoleracea; effects of plant protease inhibitors in vitro and in vivo. J Insect Physiol 45, 545-558.
Gauthier, F., Moreau, T., Lalmanach, G., Brillard-Bourdet, M., Martino, M.F.D., Juliano, L., 1993. A new, sensitive fluorogenic substrate for papain based on the sequence of the cystatin inhibitory site. Arch Biochem Biophys 306, 304-308.
Gongora, C.E., Wang, S., Barbehenn, R.V., Broadway, R.M., 2001. Chitinolytic enzymes from Streptomyces albidoflavus expressed in tomato plants: effects on Trichoplusia ni. Entomol Exp Appl 99, 193-204.
Green, T.R., Ryan, C.A., 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175, 776-777.
Koiwa, H., Bressan, R.A., Hasegawa, P.M., 1997. Regulation of protease inhibitors and plant defense. Trends Plant Sci 2, 379- 383
Kondo, H., Emori, Y., Abe, K., Suzuki, K., Arai, S., 1989. Cloning and sequence analysis of the genomic fragment encoding oryzacystatin. Gene 81, 259-265.
Herde, O., Fuss, H., Pena-Cortes, H., Fisahn, J., 1995. Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiol 36, 737-742.
Hilder, V.A., Gatehouse, A.M.R., Sheerman, S.E., Barker, R.F., Boulter, D., 1987. A novel mechanism of insect resistance engineered into tobacco. Nature 330, 160-163.
Hildmann, T., Ebneth, M., Pena-Cortes, H., Sanchez-Serrano, J.J., Willmitzer, L., Prat, S., 1992. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4, 1157-1170.
Ishimoto, M., Kitamura, K., 1989. Growth inhibitory effects of a α-amylase inhibitor in the common bean. Plant Physiol 111, 393-401.
Jacinto, T., Fernandes, K.V.S., Machado, O.L.T., Siqueira-Junior, C.L., 1998. Leaves of transgenic tomato plants overexpressing prosystemin accumulate high levels of cystatin. Plant Sci. 138, 35-42.
Jiang, S.T., Lee, B.L., Tsao, C.Y., Lee, J.J., 1997. Mackerel cathepsins B and L effects on thermal degradation of surimi. J Food Sci 62, 310-315.
Jongsma, M.A., Bakker, P.L., Visser, B., Stiekema, W.J., 1994. Trypsin inhibitor activity in mature tobacco and tomato plants is mainly induced locally in response to insect attack wounding and virus infection. Planta 195, 29-35.
Johnson, J., Narvaez, J., An, G., Ryan, C., 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci (USA) 86, 9871-9875.
Kondo, H., Abe, K., Nishismura, I., Watanabe, H., Emoir, Y., Arai, S., 1990. Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. Molecular cloning, expression and biochemical studies on oryzacystatin-II. J Biol Chem 265, 15832-15837.
Kondo, H., Abe, K., Emori, Y., Arai, S., 1991. Gene organization of oryzacystatin II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin I but different from those of the animal cystatins. FEBS Lett. 278, 87-90.
Korant, B., Towatari, T., Kelley, M., Brzin, J., Lenarcic, B., Turk, V., 1988. Interactions between a viral protease and cystatins. Biol Chem Hoppe-Seyler 369 Suppl: 281-286.
Krizaj, I., Drobnic-Kosorok, M., Brzin, J., Jerala, R., Turk, V., 1993. The primary structure of inhibitor of cysteine proteinases from potato. FEBS Lett 333, 15-20.
Liang, C., Brookhart, G., Feng, G.H., Reeck, G.R., Kramer, K.J., 1991. Inhibition of digestive proteinases of stored grain Coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seed. FEBS Lett 2, 139-142.
Machleidt, W., Thiele, U., Laber, B., Assfalg-Machleidt, I., Esterl, A., Wiegand, G., Kos, J., Turk, V., Bode, W., 1989. Mechanism of inhibition of papain by chicken egg white cystatin: Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor. FEBS Lett 243, 234-238.
Machleidt, W., Thiele, U., Assfalg-Machleidt, I., Forger, D., Auerswald, E.A., 1991. Molecular mechanism of inhibition of cysteine proteinases by their protein inhibitors: Kinetic studies with natural and recombinant variants of cystatins and stefins. Biomed Biochim Acta 50, 613-620.
Makinodan, Y., Ikeda, S., 1969. Purification and properties of a proteinase active in slightly alkaline pH range. Nippon Suisan Gakkaishi 35, 749-757.
Makinodan, Y., Toyohara, H., Niwa, E., 1985. Implication of muscle alkaline proteinase in the textural degradation of fish meat gel. J Food Sci 50, 1351-1355.
Makinodan, Y., Yokiyama, Y., Kinoshita, M., Toyohara, H., 1987. Characterization of an alkaline protease of fish muscle. Comp Biochem Physiol 87, 1041-1046.
Margis, R., Reis, E.M., Villeret, V., 1998. Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys 359, 24-30.
Martinez, M., Lopez-Solanilla, E., Rodriguez-Palenzuela, P., Carbonero, P., Diaz, I., 2003. Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties. Mol Plant Microbe Interact 16, 876-83.
McBried, K.E., Svab, Z., Schaaf, D.J., Hogan, P.S., Stalker, D.M., Maliga, P., 1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio Technology 15, 362-365.
McGurl, B., Pearce, G., Orozco-Cardenas, M., Ryan, C.A., 1992. Structure, expression and antisense inhibition of the systemin precursor gene. Science 255, 1570-1573.
McGurl, B., Orozco-Cardenas, M., Pearce, G., Ryan, C.A., 1994. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc Natl Acad Sci (USA) 91, 9799-9802.
Morton, R.L., Schroeder, H.E., Bateman, K.S., Chrispeels, M.J., Armstrong, E., Higgins, T.J.V., 2000. Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci (USA) 97, 3820-3825.
Nitti, G., Orru, S., Jr, C.B., Morhy, L., Marino, G., Pucci, P., 1995. Amino acid sequence and disulphide-bridge pattern of three γ-thionins from Sorghum bicolor. Eur J Biochem 228, 250-256.
O’Donnell, P.J., Calvert, C.M., Atzorn, R., Wasternack, C., Leyser, H.M.O., Bowles, D.J., 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274, 1914-1917.
Ohtsubo, S., Kobayashi, H., Noro, W., Taniguchi, M., Saitoh, E., 2005. Molecular cloning and characterization of oryzacystatin-III, a novel member of phytocystatin in rice (Oryza sativa L. japonica). J Agric Food Chem 53, 5128-5524.
Okada, Y., Teno, N., Itoh, N., Okamoto, H., 1985. Significant effects of synthetic Gln-Val-Val-Ala-Gly and their derivatives, common sequences of thiol proteinase inhibitors, on thiol proteinase. Chem Pharm Bull 33, 5149-5152.
Oliveira, A.S., Xavier-Filho, J., Sales, M.P., 2003. Cysteine proteinases and cystatins. Brazlian Arch Biol and Technology 46, 91-104.
Orr, G.L., Strickland, J.A., Walsh, T.A., 1994. Inhibition of Diabrotica larval growth by a multicystatin from potato tubers. J Insect Physiol 40, 893-900.
Pauto, V., Holzer, F.M., Relsch, B., Walling, L., 1993. Leucine aminopeptidase: an inducible component of the defense response in Lycopersicon esculentum (tomato). Proc Natl Acad Sci (USA) 90, 9906-9910.
Pena-Cortes, H., Albrecht, T., Prat, S., Weiler, E.W., Willmitzer, L., 1993. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191, 123-128.
Pena-Cortes, H., Prat, S., Atzorn, R., Wasternack, C., Willmitzer, L., 1996. Abscisic acid-deficient plants do not accumulate proteinase inhibitor II following systemin treatment. Planta 198, 447-451.
Plunkett, G., Senear, D.F., Zuroske, G., Ryan, C.A., 1982. Proteinase inhibitor I and II from leaves of wounded tomato plants: purification and properties. Arch Biochem Biophys 213, 463-472.
Rodis, P., Hoff, J.E. 1984. Naturally occurring protein crystals in potato. Plant Physiol 74, 907-911.
Punja, Z.K., Yhang, Y.Y., 1993. Plant chitinases and their roles in resistance to fungal diseases. J Nematol 25, 526-540.
Ryan, C.A., 1987. Oligosaccharide signalling in plants. Annu Rev Cell Biol 3, 295-317.
Ryan, C.A., 1990. Protease inhibitors in plants: gene for improving defenses against insects and pathogens. Annu Rev Phytopathol 28, 425-429.
Ryan, C.A., 1992. The search for the proteinase inhibitor-induction factor, PIIF. Plant Mol Biol 19, 123-133.
Ryan, C.A., 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477, 112-121.
Schaller, A., Ryan, C.A., 1995. Systemin-a polypeptide defense signal in plant. Bioassays 18, 27-33.
Schaller, A., Ryan, C.A., 1994. Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having Kex2p-like properties. Proc Natl Acad Sci (USA) 91, 11802-11806.
Schaller, A., Ryan, C.A., 1996. Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Plant Mol Biol 31, 1073-1077.
Seki, K., Uno, H., Lei, N., Kimura, E., Toyoda, K., Fujita, T., Arai, K., 1990. Transglutaminase activity in Alaska pollock muscle and surimi and its reaction with myosin B. Nippon Suisan Gakkaishi 56, 125-132.
Seymour, T.A., Morrissey, M.T., Peters, M.Y., An, H., 1994. Purification and characterization of Pacific whiting proteases. J Agric Food Chem 42, 2421-2427.
Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A., Lukyanov, S.A., 1995. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res23, 1087-1088.
Siqueira-Junior, C.L,. Fernandes, K.V.S., Machado, O.L.T., Cunha, M.D., Gomes, V.M., Moura, D., Jacinto, T., 2002. 87 kDa tomato cystatin exhibits properties of a defense protein and forms protein crystals in prosystemin overexpressing transgenic plants. Plant Physiol Biochem 40, 237-254.
Stoger, E., Williams, S., Christou, P., Down, R.E., Gatehouse, J.A., 1999. Expression of the insecticidal lectin from snowdrop in transgenic wheat plants: effects on predation by the grain aphids Sitobion avenae. Mol Breed 5, 65-73.
Takahashi, M., Tezuka, T., Katunuma, N., 1994. Inhibition of growth and cysteine proteinase activity of Staphylococcus aureus V8 by phosphorylated cystatin alpha in skin cornified envelope. FEBS Lett 355, 275-278.
Ussuf, K.K., Laxmi. N.H., Mitra, R., 2001. Proteinase inhibitors: plant-derived genes of insecticidal protein for developing insect-resistant transgenic plants. Current Sci 80, 847-853.
Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., Beuckeleer, M., Dean, C., Zabeau, M., Vandewiele, M., Leemans, J., 1987. Transgenic plants protected from insect attack. Nature 328, 33-37.
Waldron, C., Wegirch, L.M., Merlo, P.A., Walsh, T.A., 1993. Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol Biol 23, 801-812.
Walker-Simmons, M., Ryan, C.A., 1984. Proteinase inhibitor synthesis in tomato leaves: induction by chitosan oligomers and chemically modified chitosan and chitin. Plant Physiol 76, 787-790.
Walsh, T.A., Strickland, J.A., 1993. Proteolysis of the 85-kilodalton crystalline cysteine proteinase inhibitor from potato releases functional cystatin domains. Plant Physiol 103, 1227–1234.
Wasson, D.H., 1992. Fish muscle proteases and heat-induced myofibrillar degradation: a review. J Aqua Food Product Tech 1, 23.
Wen, R., Zhang, S.C., Michaud, D., Sanfaçon, Hélène., 2004. Inhibitory effects of cystatins on proteolytic activities of the Plum pox potyvirus cysteine proteinases. Virus Research 105, 175-182.
Wilhite, S.E., Elden, T.C., Brzin, J., Smigocki, A.C., 2000. Inhibition of cysteine andaspartyl proteinases in the alfalfa weevil midgut with biochemical and plant-derived proteinase inhibitors. Insect Biochem Mol Biol 30, 1181-1188.
Wu, J.W., Haard, N.F., 1998. Use of cysteine proteinase inhibitors from injured tomato leaves in whiting surimi. J Food Biochem 22, 383-398
Wu, J.W., Haard, N.F., 2000. Purification and characterization of a cystatin from the leaves of methyl jasmonate treated tomato plants. Comparative Biochemistry and Physiology – Part C Toxicology and Pharmacology 127, 209-220.
Wu, J.W., Haard, N.F., 2001. Cystatin accumulation in tomato leaves after methyl jasmonate treatment or mechanical injury. J Food Biochem 26, 21-36.
Xue, D., 2002. A summary of research on the environmental impact of BT cotton in China. Published by Greenpeace, 26 pp. valid on http://www.greenpeace.org 2004.
Yang, A.H., Yeh, K.W., 2005. Molecular cloning, recombinant gene expression,and anti (Colocasia esculenta cv. Kaosiung no. 1) fungal activity of cystatin from taro. Planta 221, 493-501.
Ye, X.Y., Ng, T.B., Tsang- Paul W.K., Wang. J., 2001. Isolation of a Homodimeric Lectin with Antifungal and Antiviral Activities from Red Kidney Bean (Phaseolus vulgaris) Seeds. J Pro Chems 20, 367-375.
Yeh, K.W., Chen, J.C., Lin, M.I., Chen, Y.M., Lin, C.Y., 1997. Functional activity of sporamin from sweet potato (Ipomoea bataras Lam.): A tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33, 565-570.
Yeh, K.W., Lin, M.I., Tuan, S.J., Chen, Y.M., Lin, C.Y., Kao, S.S., 1997. Sweet potato (Ipomoea bataras) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell reports 16, 696-699.
陳俊宏 (2001) 雞半胱酸蛋白酶抑制劑之選殖、表現、醣化俢飾及於魚漿加工上之應用。國立台灣海洋大學食品科學系博士學位論文。
曾鑫順 (2002) 鯉魚卵巢硫氫蛋白酶抑制劑之基因選殖、大量表現及在魚漿加工上之應用。國立台灣海洋大學食品科學系博士學位論文。
吳萬財 (2001) 利用 Fusion Protein-Thioredoxin 增加雞半胱胺酸蛋白酶抑制劑在大腸桿菌中之表現量及對抑制魚漿解膠之效果。國立台灣海洋大學食品科學系碩士學位論文。
王清玲,林鳳琪,林俊義 (2004) 抗蟲基因轉殖植物之類別與其對環境中昆蟲類之影響。植物保護學會會刊(46), 181-209。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top