跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉玉萍
研究生(外文):Yu-Ping Liu
論文名稱:添加物與儲存條件對卡德蘭膠製品質感特性與離水性之影響
論文名稱(外文):Effects of Additives and Storage Conditions on Textural Characteristics and Syneresis of Curdlan Gel Products
指導教授:邱思魁邱思魁引用關係蔡震壽蔡震壽引用關係
指導教授(外文):Tze-Kuei Chiou, Ph.D.Jenn-Shou Tsai, Ph.D.
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:卡德蘭膠添加物質感特性離水性
外文關鍵詞:curdlanadditivetextural characteristicsyneresis
相關次數:
  • 被引用被引用:7
  • 點閱點閱:2142
  • 評分評分:
  • 下載下載:296
  • 收藏至我的研究室書目清單書目收藏:0
以卡德蘭膠為原料探討不同添加物及冷藏冷凍條件,對其膠體質感特性與離水性的影響。隨著卡德蘭膠濃度 ( 5~7% )的增加,其膠強度由5187.8增至6016.6 ( g×mm ),離水率由19.8降至13.0%。在卡德蘭膠中分別添加五種3%的纖維素,經過-80℃低溫冷凍後,其中以添加木質纖維素之破斷力 ( 542.9 g )與控制組 ( 568.3 g )無顯著差異,且在破斷點、膠強度與剛硬度皆較佳。添加纖維素皆能有效降低卡德蘭膠體之離水率,而其中以羥丙基甲基纖維素的16.0%為最低。添加三種2%不同的澱粉,經-80℃低溫冷凍後,其中糯性玉米澱粉與綠豆澱粉組,兩者間之膠強度無明顯的差異,而離水率則以糯性玉米澱粉組的5.1%為最低。卡德蘭膠中添加四種0.3%的多醣類均會造成膠強度下降,但離水率會分別減少31.0、53.0、54.0與58.0%。而添加分離大豆蛋白乳化漿,隨著濃度 ( 5~15% )的增加均會造成膠體之膠強度的下降。
分別以不同濃度 ( 5、7、8% )之卡德蘭膠為主體製成素食魚板後,與市售素魚板進行官能品評,結果市售之素魚板在總體接受度上的表現為4.8分,明顯低於自製的三組素魚板。
The aim of this study was to investigate the textural characteristics and syneresis effect of curdlan gel products by adding different food additives and cold and frozen storage. The gel strength of curdlan gel increased from 5187.8 to 6016.6(g×mm) as curdlan concentration increased from 5 to 7%, but the syneresis rate decreased from 19.8 to 13.0%. Five kinds of cellulose (wheat fiber with 250μm particle, wheat fiber with 80μm particle, hydroxypropylmethylcellulose, micromethylcellulose and wood fiber) were added to curdlan gel at 3%. There was no significant difference between wood fiber added and control on breaking force, when curdlan gel was stored at -80℃ for one week. Wood fiber added curdlan gel was better in breaking point, gel strength and rigidity. And all cellulose was added in curdlan gel effective in reducing syneresis. The hydroxypropylmethylcellulose (HPMC) was lowest syneresis rate being 16.0%.
Starches were added in curdlan gel at 2% and stored at -80℃ for one week. The results showed that the gel strength did not differ between the addition of waxy corn starch and mung bean starch, but the curdlan gel with waxy corn starch was more effective in reducing syneresis rate being 5.1%. Four gums (κ-carrageenan, guar gum, locust bean gum and xanthan gum) were added in the curdlan gel at 0.3%, respectively. All of these gums affected the decrease of gel strength but more effective in reducing syneresis. The decrease in syneresis rate were 31, 53, 54 and 58%, respectively. The addition of emulsified soy protein isolate gel ( from 5 to 15% ), the gel strength of curdlan gel was decreased.
The curdlan gel with 5, 7 and 8% curdlan showed higher overall acceptability than commercial vegetarian kamaboko product by sensory evaluation.
目錄
頁次
中文摘要………………………………………………………… i
英文摘要………………………………………………………… ii
目錄……………………………………………………………… iv
表目錄…………………………………………………………… viii
圖目錄…………………………………………………………… x
表附錄…………………………………………………………… xi
壹、前言………………………………………………………… 1
貳、文獻整理…………………………………………………… 3
(一)多醣類的特性與來源………………………………… 3
1.特性…………………………………………………… 3
2.來源…………………………………………………………… 3
(二)卡德蘭膠……………………………………………… 4
1.來源…………………………………………………… 4
2.化學構造……………………………………………… 5
3.成分…………………………………………………… 6
4.凝膠機制……………………………………………… 6
5.凝膠特性……………………………………………… 8
6.影響成膠性的因子…………………………………… 9
(1)溶液的種類……………………………………… 9
(2)攪拌速度………………………………………… 9
(3)儲存條件………………………………………… 9
(4)加熱溫度與時間………………………………… 10
(5)pH值……………………………………………… 10
(6)其他成分………………………………………… 10
(7)耐凍性…………………………………………… 10
(8)離水性……………………………………………… 11
(9)濃度………………………………………………… 11
7.食品加工上之應用……………………………………… 11
(1)食品改良劑.………………………………………… 11
(2)食品添加物………………………………………… 12
(3)食品主成分………………………………………… 12
(4)高纖及低熱量食品………………………………… 12
(三)卡德蘭膠和添加物間之交互作用與加工上的應用…… 13
1.多醣類與纖維素………………………………………… 13
2.多醣類與蛋白質………………………………………… 16
3.多醣類與多醣類………………………………………… 18
a.澱粉…………………………………………………… 18
b.多醣類………………………………………………… 19
參、實驗材料與方法……………………………………………… 24
(一)實驗材料………………………………………………… 24
(二)實驗流程………………………………………………… 27
(三)實驗方法………………………………………………… 27
1.膠體的製備……………………………………………… 27
2.膠體質感特性的測定…………………………………… 28
3.離水率之測定…………………………………………… 29
4.官能品評………………………………………………… 30
5.統計分析………………………………………………… 30
肆、結果與討論…………………………………………………… 31
(一)不同添加物對於卡德蘭膠體經低溫儲藏後其質感特性
與離水率的影響………………………………………… 31
1.不同濃度之卡德蘭膠對其膠體特性與離水率的影響… 31
2.添加纖維素的影響……………………………………… 32
3.添加多醣類的影響……………………………………… 34
4.添加調味料的影響……………………………………… 35
(二)混合添加物對卡德蘭膠膠體經低溫貯藏後其質感特性
的影響…………………………………………………… 37
1.添加蛋白質的影響……………………………………… 37
2.添加澱粉與多醣類的影響……………………………… 39
(三)與市售魚板之比較……………………………………… 41
伍、結論…………………………………………………………… 43
陸、參考文獻……………………………………………………… 44
柒、表……………………………………………………………… 56
捌、圖……………………………………………………………… 70
玖、附表…………………………………………………………… 78

表目錄
頁次
表一、不同濃度之卡德蘭膠經低溫貯藏後對其膠體質感特性之影
響…………………………………………………………… 56
表二、纖維素 ( 2% )的添加對卡德蘭膠在低溫貯藏後其質感特性
與離水率之影響…………………………………………… 57
表三、纖維素 ( 3% )的添加對卡德蘭膠在低溫貯藏後其質感特性
與離水率之影響…………………………………………… 58
表四、多醣類的添加對卡德蘭膠在低溫貯藏後對其質感特性之影
響…………………………………………………………… 59
表五、添加物對卡德蘭膠經低溫貯藏後其質感特性與離水率之影
響…………………………………………………………… 60
表六、添加1%與3%的小麥蛋白質對卡德蘭膠經低溫貯藏後其質感
特性與離水率之影響……………………………………… 61
表七、蛋白質的添加對卡德蘭膠(含0.3%鹿角菜膠)在低溫貯藏後
其質感特性與離水率之影響……………………………… 62
表八、蛋白質的添加對卡德蘭膠(含0.3%關華豆膠)在低溫貯藏後
其質感特性與離水率之影響……………………………… 63
表九、乳化漿的添加對卡德蘭膠經低溫貯藏後其質感特性之影響
…………………………………………………………… 64
表十、澱粉的添加對卡德蘭膠在低溫貯藏後其質感特性之影響 65
表十一、澱粉的添加對卡德蘭膠(含2%糯性玉米澱粉)在低溫貯藏
後其質感特性與離水率之影響…………………………… 66
表十二、纖維素、澱粉與多醣類的添加對卡德蘭膠經低溫貯藏後
其質感特性與離水率之影響……………………………… 67
表十三、卡德蘭膠與市售素食魚板之比較……………………… 68
表十四、以不同濃度之卡德蘭膠製成品與市售素食魚板消費者嗜
好性品評統計分析………………………………………… 69


圖目錄
頁次
圖一、卡德蘭膠分子結構式……………………………………… 70
圖二、卡德蘭膠受熱凝膠化模式圖……………………………… 71
圖三、實驗流程圖………………………………………………… 72
圖四、破斷測試曲線圖…………………………………………… 73
圖五、不同濃度之卡德蘭膠經低溫貯藏後對其離水率之影響… 74
圖六、多醣類的添加對卡德蘭膠在低溫貯藏後其離水率之影響 75
圖七、乳化漿的添加對卡德蘭膠在低溫貯藏後其離水率之影響 76
圖八、澱粉的添加對卡德蘭膠在低溫貯藏後其離水率之影響… 77


表附錄
頁次
附表一、實驗用膳食纖維種類…………………………………… 78
陸、參考文獻
邱健人、魏琬櫻。1978。膠在食品工業上之應用(一)。食品工業10
(11): 36-42。
邱健人、魏琬櫻。1978。膠在食品工業上之應用(二)。食品工業10
(12): 37-42。
宋云平、宮衡、傅水林、云战友。2005。海藻糖對澱粉回生抑制作
用的研究。食品科學。中國。26(10): 94-98。
林素ㄧ、王西華、呂政義。1978。油對米澱粉老化之影響。食品科
學。5(1): 18-280。
吳鴻程、朱惠玲、林盈君、郭建民。1998。鹽、膠質種類和蔗糖對
κ-鹿角菜膠布丁機械性質的影響。嘉南學報。24: 12-19。
金安兒、劉家芳。1999。以反應曲面法探討影響curdlan凝膠抗凍性
之因子。農林學報。48(1): 45-59。
施明智。2003。食物學原理。p.54。藝軒圖書出版社,台北,台灣。
胡國華。2003。功能性食品膠。p.264-275, p.348。化學工業出版
社,北京,中國。
徐華強、黃登訓、顏德財。1970。蛋糕與西點。台灣區麵麥食品推廣
委員會。美國小麥協會印行。
翁玉娥、周照仁。1995。添加纖維素及洋菜對煉製品品質之影響。食
品科學22(5): 606-614。
翁玉娥、朱玉灼。1996。膳食纖維對冷凍魚漿耐凍性之影響。食品科
學23(2): 266-275。
陳明造。1999。素食食品-營養特性與加工。p.13-14。藝軒圖書出版
社,台北,台灣。
陳俊成。2003。三仙膠的製造、性質與應用。食品資訊。193: 51-
55。
麥素英。2004。第二型糖尿病患者攝取高量膳食纖維對其血脂肪的影
響。臺北醫學大學保健營養學系碩士論文。
郭春芳。2004。多醣膠質於食品工業之應用。烘焙工業。117: 49-
59。
莊志仁。2005。食用膠之技術與應用。p.17, p.230-232。華香園出
版社,台北,台灣。
張永兆、郭文怡、黃宏隆、謝玉坤、陳賢哲、徐華強。1990。鹼粽加
工及硼砂代用品之研究。中華穀類食品工業技術研究所研究報告
第十四輯。
黃伯超、潘文涵、李隆安、高美丁、曾明淑、李蘭、蕭信雲、洪永泰
。1998。國民營養健康狀況變遷調查報告。台灣民眾重要相關疾
病糖尿病之狀況。1993-1996年。
黃韋誠。2003。以反應曲面法探討鱈魚魚漿製品最適化之研究。國立
屏東科技大學食品科學系碩士論文。
彭翊瑋。2004。多醣類之混合膠與蛋白質之交互作用對膠體質感特性
的影響。國立台灣海洋大學食品科學系碩士論文。
溫昭凱。1999。影響蒟蒻膠體及卡德蘭膠低溫儲藏中離水率之因素與
改進方法。國立台灣海洋大學食品科學系碩士論文。
蔡震壽、大村浩久。1995。多醣類混合添加對分離大豆蛋白質乳化物
質感特性的影響。食品科學。22(5): 514-520。
蔡震壽、譚詠慧。1990。多醣類對分離大豆蛋白質乳化物的乳化特性
之影響。食品科學。17(2): 97-104。
劉登城、陳明造。1992。貢丸製造改進之研究VIII. 纖維素之添加對
豬肉貢丸品質之影響。中畜會誌。21(4): 403-409。
劉怡佐。2000。影響混合澱粉糊化行為之因素。中國文化大學生活應
用科學研究所碩士論文。
劉少玲。2001。日本食物纖維素材的最新動態。食品開發。516: 30-
34。
戴瑞琴、陳仁威、賴玉琴、白雅瑜、陳炯堂。1997。米澱粉-月桂醇
複合物之熱性質及回凝動力學。食品科學。24(1): 32- 43。
謝明哲。1991。膳食纖維與保健。國民營養指導手冊(二)。p.41-
47。行政院衛生署,台北市。
謝吉彥。2005。不同添加物與低溫儲藏對卡德蘭膠製品之物性影響。
國立台灣海洋大學食品科學系碩士論文。
蕭鳳岐。1996。用熱凝多醣( curdlan )新食品型態的開發。食品市
場資訊。125(5): 36。
鐘心言。1997。以食用膠製造低脂貢丸之研究。國立台灣大學食品科
技研究所碩士論文。
大倉裕二。1994。カ-ドランによる新しい食品型態の開發。食品開
發。29: 5-7。
中尾行宏、田口哲也、山口武信。1994。Preparations of
freezable processed tofu and freeze-dried tofu by using
curdlan. 日本食品工業學會誌。41: 141-147。
奈良潔。1991。カ-ドランの性質と食品への利用。食品工業。Jul.
30: 31-40。
原田篤也。1994。カ-ドラントサクミノグリカンの物語リ。New
Food Industry。36: 49-55。
船艦孝博、中尾行宏。1996。Effect of curdlan on the
rheological properties and gelling processes of meat
gels under a model system using minced pork. 日本食品科
學工學會誌。43: 21-28。
Bahnassey, Y. and Breene, WM. 1994. Rapid visco-analysis
(RVA) pasting profiles of wheat, corn, waxy corn,
tapioca and amaranth starches ( A. hypochondriacus and
A. cruentus ) in the presence of konjac flour, gellan,
guar, xanthan and locust bean gums. Starch/Starke 46
(4): 134-141.
Bernal, V. M., Smajda, C. H., Smith, J. L. and Stanley, D.
W. 1987. Inteactions in protein/polysaccharide/calcium
gel. J. Food Sci. 52: 12.
Burova, T. V., Grinbery, N. V., Grinbery, V. Y., Leontiev,
A. L. and Tolstoguzov, V. B. 1992. Effect of
polysaccharides upon the functional properties of 11S
globulin of broad beans. Carbohyd. Polym. 18: 101-108.
Chen, C. S., Hwang, D. C. and Jiang, S. T. 1989. Effect of
storage temperatues on the formation of disulfides and
denaturation of milkfish myosin ( Chanos chanes ). J.
Agric. Food Chem. 37(5): 1228-1232.
Dill, C. W., Brough, T., Ajgord, E. S., Gardner, F. A.,
Edwards, R. L. and Diehl, K. C. 1991. Rheological
properties of heat-induced gels from egg clbumen
subjected to freeze thaw. J. Food Sci. 30: 764-768.
Elsenhans, B., Suflke, U. and Blume, R. 1980. The influence
of caborhydrate gelling agents on rat intestinal
transport of monosaccharides and neutral amino acids
in vitro. Clin. Sci. 59: 373-380.
Eidam, D. and Kulicke, WM. 1995. Formation of maize starch
gels selectively regulated by the addition of
hydrocolloids. Starch/Starke. 47(10): 378-384.
Fernandes, P. B. 1995. Influence of galactomannan on the
structure and thermal behaviour of xanthan/
galactomannan mixtures. J. Food Eng. 24: 269-283.
Foegeding, E. A. and Ramsey, S. R. 1986. Effect of gums on
low-fat meat batters. J. Food Sci. 51(1): 33-36, 46.
Funami, T., Funami, M., Yada, H. and Nakao, Y. 1999.
Rheological and thermal studies on gelling
characteristics of curdlan. Food Hydro. 13: 317-324.
Funami, T. and Nishinari, K. 2006. Gelling characteristics
of curdlan aqueous dispersions in the presence of
salts. Food Hydro. In Press.
Glicksman, M. 1979. Gelling Hydrocolloids in food product
applications. In“Polysaccarides in Food”Blanshard,
J. M. V. and Mitchell, J. R. (Eds.). Butterworth,
London. p. 12.
Glicksman, M. 1982. Curdlan. In “Food Hydrocolloids, Vol.
I”, pp. 151-156. M. Glicksman (Ed.), CRC Press, Inc.,
Boca Raton, Florida, USA.
Glicksman, M. 1982. Background and classification. In
“FoodHydrocolloids, Vol. I”, pp. 3-18. M. Glicksman
(Ed.), CRC Press,Inc., Florida.
Harada, T., Masada, M., Fugimori, K. and Maeda, I. 1966.
Production of a firm, resilient gel-forming
polysaccharide by a mutant of Alcaligenes faecalis
var. myxogenes 10C3. J. Agric. Biol. Chem. 30: 196-201.
Harada, T., Misaki, A. and Saito, H. 1968. Curdlan: a
bacterial gel-forming β-1,3-glucan. Archives of
biochemistry and biophysics. 124: 292-298.
Holt, D. L., Watson, M. A. Dill, C. W., Alford, E. S.,
Edwards, E. S., Edwards, R. L., Diehl, K. C. and
Ceardner, F. A. 1984. Correlation of the rheological
behavior of egg albumen to temperature, pH and NaCl
concentration. J. Food Sci. 49: 137-141.
Hsu, S. Y. and Chung, H. Y. 1999. Comparisons of 13 edible
gum-hydratefat substitute for low-fat Kung-wan ( an
emulsified meatball ). J.Food Eng. 40(4): 279-285.
Hui, P. A. and Neukom, H. 1964. Some properties of
galactomannans. TAPPI 47: 39-42.
Jansson, P. E., Kenne, L. and Lindberg, B. 1975. Structure
of the extracellular polysaccharide form Xanthomonas
campestris. Carbohydr. Res. 45: 275-282.
Jenkins, D. J., Wolever, T. M., Nineham, R. 1979. Dietary
fiber and diabetic therapy: A progressive effect with
time. Adv. Exp. Med. Biol. 119: 275-279.
Jezequel, V. 1998. Curdlan: a new functional β-glucan.
Cereal foods world. 43(5): 361-364.
Jiang, S. T., San, P. C. and Japit, L. S. 1989. Effect of
storage temperatures on the formation of disulfides
and denaturation of tilapia hybrid actomyosin. J.
Agric. Food Chem. 37(5): 1228-1231.
Kay, R. M. 1982. Dietary fiber. J. lipid Res. 23: 221.
Kanzawa, Y. T., Harada, A. Koreeda, and A. Harada. 1987.
Curdlan gel formed by neutralizing its alkaline
solution. Agric. Biol. Chem. 51(7): 1839-1843.
Kasapis, S., Norton, I. T., Morris, E. R. and Clark, H.
1993. Phase equilibria and gelation in
gelatin/Maltodextrin system/part IV: 21(4): 269-276.
Kinsella, J. E. 1976. Functional properties of proteins of
food. CRC Rew. In Food Sci. and Nutri. 7: 219-225.
Kinsella, J. E. 1976. Functional properties of proteins in
foods-a survey. Crit. Rev. In Food Sci. and Nutri. 8:
219.
Konno, A., Kimura, H., Nakagawa, T. and Harada, T. 1978.
Gel formation of curdle. Nippon Nogei Kagaku, Kaishi,
( in Japanese ). 52: 247-250.
Konno, A. and Harada, T. 1991. Thermal properties of
curdlan in aqueous suspension and curdlan gel. Food
Hydro. 5: 427-434.
Konna, A., Okuyama, K., Koreeda, A., Harada, A., Kanazawa,
Y. And Harada, T. 1994. Molecular association and
dissociation in formation of curdlan gels. In “Food
Hydrocolloids, Structure, Properties, and Functions”,
pp.113-118. K. Nishinari and E. Doi (Eds.), Plenum
Press, New York.
Ko, Y. T. and Lin, Y. L. 2004. 1,3-β-Glucan Quantification
by a Fluorescence Microassay and Analysis of Its
Distribution in Foods. J. Agric. Food Chem. 52: 3313-
3318.
Lee, C. M. 1984. Surimi process technology. Food Tech. 38:
69-77.
Lee, I. Y., Seo, W., Kim, M. K., Park, C. and Park, Y. H.
1997. Production of curdlan using sucrose or sugar one
molasses by two-stepfed-batch cultivation of
agrobateriun species, Worls J. Micro. Bio. Bio. (4).
180(4): 255-322.
Lee, M. H., Baek, M. H., Cha, D. S., Park, H. J., Lim, S.
T. 2002. Freeze-thaw stabilization of sweet potato
starch gel by polysaccharide gums. Food Hydro. 16: 345
-352.
Maeda, M., Saito, I., Masada, H., Misaki, M. and Harada, T.
1967. Properties of gels formed by heat treatment of
curdlan, a bacterial β-1, 3 glucan. Agric. Bio. Chem.
31: 1184-1188.
Matsuhashi, T. 1990. Agar. In “Food Gels”, pp.1-52. P.
Harris (Ed.), Elsevier Applied Science, New York.
Mittal, G. S. and Barbut, S. 1994. Effects of carrageenans
and xanthan gum on the texture and acceptability of
low fat frankfurters. J. Food Proc. Pre. 18(3): 201-
216.
Morris, E. R., Rees, D. A., Young, G., Walkinshaw, M. D.
and Darker, A. 1984. Order-disorder transition for a
bacterial polysaccharide in solution. A role for
polysaccharide conformation between Xanthomonas
pathogen and its plant host. J. Mol. Biol. 110: 1-16.
Nakao, Y., Taguchi, T., Konno, A., Tawada, T., Kasai, H.,
Toda, J. and Terasaki, M. 1991. Curdlan: Properties
and application to foods. J. Food Sci. 56: 769-776.
Nishinari, K. 2000b. Macromol. Symp. 159: 205-214.
Okiyama, A., Motoki, M., Yamanaka, S. 1993a. Bacterial
cellulose III. Development of a new form of cellulose
for food materials. Food Hydro. 6(6): 493-501.
Pszczola, D. E. 1997. Curdlan differs from other gelling
agents. Food Tech. 51: 30.
Rizzotti, R., Tilly, G. and Patterson, R. A. 1983. The use
of hydrocolloids in the dairy industry. In “Gums and
Stabilizers for the Food Industry”, pp.285-293. G.
O. Phillips, D. J. Wedlock and P. A. Williams (Eds.),
Pergamon Press, New York.
Rochas, C., M. Rinaudo and S. Landry. 1989. Relation
between the molecular structure and mechanical
properties of carrageenan gels. Carbohydr. Polym. 10:
115-127.
Saito, H. 1981. Conformation, dynamics, and gelation
mechanism of gel-state ( 1→3 )-β-D-glucans revealed
by C-13 NMR. In “Solution Properties of
Polysaccharides”, pp.125-147. Brant, D. A. (Ed.),
USA.
Samant, S. K., Singhal, R. S., Kulkarni, P. R. and Rege, D.
V. 1993. Protein-polysaccharide interactions: a new
approach in food formulations. Inter. J. Food Sci.
Tech. 28: 547-562.
SAS. 1998. The GLM procedure. In: SAS/STATTM User’s Guide,
Release 6.03 Edition. Cary, Nc: SAS Institute Inc. p.
549-640.
Sánchez-Alonso, I., Haji-Maleki, R. and Borderias, A. J.
2006. Wheat fiber as a functional ingredient in
restructured fish products. Food Chem. In press.
Schneeman, BO. 1986. Dietary fiber: physical and chemical
properties, methods of analysis, and physiological
effects. Food Tech. 40(2): 104-110.
Shand, P. J. A. 1992. Functional and thermal properties of
polysaccharide gums in structured beef. Dissertation
Abstracts International. 52(9): 4538.
Singh, K. J. and Roos, Y. H. 2006. State transitions and
freeze concentration in trehalose-protein-cornstarch
mixtures. LWT. 39: 930-938.
Slavin, J. L. 2005. Dietary fiber and body weight.
Nutrition. 21: 411-418.
Snoeren, Th. H. M. 1976. κ-carrageenan. A study on its
physicochemical properties, sol-gel transition and
interaction with milk proteins. Thesis, Nederlands
Instituut voor Zuivelonderzoek, Ede, The Netherlands.
Solheim, R. and Ellekjaer, M. R. 1993. Sensory quality of
low-fat sausages affected by fat substitutes. Food
Qual. Prefer. 4(3): 127-131.
Stipanovic, A. J., Giammatto, P. J. and Vasconcellos, S. R.
1987. Characterization and applications of
viscoelastic solutions and water-soluble microbical
polysaccharides. Poly. Mat. Sci. Eng. 57: 260-264.
Stipanovic, A. J. and Giammatteo, P. J. 1989. Curdlan and
scleroglucan: NMR. Characterization of solution and
gel properties. In “Polymers in Aqueous Media”,
pp.73-87. Edward, G. J. (Ed.).
Tako, M. and Hanashiro, I. 1997. Evidence for a
conformational transition in curdlan. Pol. Gels and
Networks. 5: 241-250.
Takashiro, F., Hideo, Y. and Yukihiro, N. 1998. Curdlan
Properties for application in fat mimetics for meat
products. J. Food Sci. 63: 283-287.
Tada, T., Matsumoto, T. and Masuda, T. 1999. Dynamic
viscoelasticity and small-angle X-ray scattering
studies on the gelation mechanism and network
structure of curdlan gels, Carbohy. Polym. 39: 53-59.
Tolstoguezov, V. B. 1991. Functional properties of food
proteins and role of protein-polysaccharide
interaction. Food Hydro. 4(6): 429.
Usov, A. I. 1992. Sulfated polysaccharides of the red
seaweeds. Food Hydro. 6: 9.
Yamazawa, M. 1990. Effect of heating temperature on the
structure and gel-reinforcing ability of starch
granules in kamaboko-gel. Nippon Suisan Gakkaishi. 56:
505.
Zhang, H., Nishinari, K. and Ikeda, S. 2000. Hydrocolloid
gels of polysaccharides and proteins, Current opinion
in Colloid and Interface Sci. 5: 195-200.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top