跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝宜穎
研究生(外文):Yi-Ying Shie
論文名稱:石斑魚稚魚銅之需求及其與維生素C之交互作用
論文名稱(外文):Copper requirement and its interaction with vitamin C in juvenile grouper, Epinephelus malabaricus
指導教授:蕭錫延蕭錫延引用關係
指導教授(外文):Shi-Yen Shiau
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:108
中文關鍵詞:需求量石斑魚維生素C
外文關鍵詞:copperrequirementgroupervitamin C
相關次數:
  • 被引用被引用:3
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:2
總摘要

本研究探討石斑魚稚魚銅(copper, Cu)之需求量及銅與維生素C (ascorbic acid, AA)間交互作用及其對免疫反應之影響。
實驗一:硫酸銅(copper sulfate)以下列劑量0、1、2、4、6、8、10與20 mg Cu/kg diet添加於基礎飼料中,其實際分析值分别為0.11、1.66、2.41、4.37、6.56、8.97、11.03與20.05 mg Cu/kg diet等總共八組,餵予平均初重13.35 ± 0.004 g之石斑魚稚魚,每組三重覆,於密閉循環系統中飼養八週。石斑魚餵食6.56 mg Cu/kg diet組其增重率顯著(p<0.05)高於其它各組。石斑魚肝臟銅鋅超氧化歧酶活性以餵食6.56 mg Cu/kg diet組最高,8.97 mg Cu/kg diet組次之,20.05 mg Cu/kg diet組再次之,餵食未添加銅之控制組則最低。石斑魚血漿藍胞漿素活性以餵食6.56 mg Cu/kg diet組最高,8.97 mg Cu/kg diet組次之,11.03 mg Cu/kg diet組再次之,餵食控制組最低。石斑魚白血球超氧陰離子產率以餵食4.73及6.56 mg Cu/kg diet兩組高於其他各組。石斑魚肝臟銅鋅超氧化歧酶活性與血漿藍胞漿素活性經拐點迴歸分析以及全魚體銅保留量經線性迴歸分析估得石斑魚稚魚之銅最適需求量為
4∼6 mg Cu/kg diet。
實驗二:本實驗為2×3複方實驗設計,含適量(6 mg Cu/kg diet)與高量(48 mg Cu/kg diet)銅之基礎飼料中分別添加三種劑量維生素C (適量:8.3 mg AA/kg diet,兩倍適量:16 mg AA/kg diet及四倍適量:32 mg AA/kg diet)總共六組,NCu-NC (6 mg Cu/kg diet; 8.3 mg AA/kg diet)、NCu-HC (6 mg Cu/kg diet; 16 mg AA/kg diet)、NCu-HHC (6 mg Cu/kg diet; 32 mg AA/kg diet)、HCu-NC (48 mg Cu/kg diet; 8.3 mg AA/kg diet)、HCu-HC (48 mg Cu/kg diet; 16 mg AA/kg diet)、及HCu-HHC (48 mg Cu/kg diet; 32 mg AA/kg diet),餵予平均初重12.21 ± 0.02 g石斑魚稚魚,每組飼料三重複,實驗為期八週。當石斑魚飼料中添加適量維生素C時,其增重率以餵食NCu-NC組顯著(p<0.05)高於HCu-NC組;石斑魚魚體及肝臟銅濃度皆以餵食HCu-NC組高於NCu-NC組;石斑魚餵食NCu-NC組之白血球超氧陰離子產率高於HCu-NC組。在HCu組別中,石斑魚增重率以餵食HCu-HHC組高於HCu-NC組;石斑魚魚體及肝臟銅濃度皆以餵食HCu-NC組高於HCu-HHC組;石斑魚餵食HCu-HHC組之白血球超氧陰離子產率高於HCu-NC組。本實驗結果顯示提高飼料中維生素C含量,可以改善石斑魚因攝取高量銅所造成組織中過量銅之蓄積,並減輕對石斑魚成長及免疫反應之抑制作用。
Abstract

The study was conducted to quantify the optimum dietary copper (Cu) requirements and its interaction with vitamin C (ascorbic acid, AA) in juvenile grouper (Epinephelus malabaricus).
Experiment Ι. Copper sulfate was added to the basal diet at 0, 1, 2, 4, 6, 8, 10 and 20 mg Cu/kg diet providing the actual dietary value of 0.11, 1.66, 2.41, 4.37, 6.56, 8.97, 11.03 and 20.05 mg Cu/kg diet, respectively. Each diet was fed to triplicate groups of fish (initial body weight 13.35 ± 0.004 g) in a recirculated rearing system for 8 weeks. Fish fed diet with 6.56 mg Cu/kg had significantly (p<0.05) higher weight gain than all the other dietary treatments. Liver copper-zinc superoxide dismutase (CuZn SOD) activity was highest in fish fed diet with 6.56 mg Cu/kg, followed by 8.97 mg Cu/kg, then 20.05 mg Cu/kg, and lowest in fish fed the unsupplemented control diet. Fish fed diet with 6.56 mg Cu/kg had highest plasma ceruloplasmin activity, followed by 8.97 mg Cu/kg, then 11.03 mg Cu/kg, and lowest in fish fed the control diet. Leukocyte superoxide anion production ratio was higher in fish fed diets with 4.73 and 6.56 mg Cu/kg than other dietary treatments. Analysis by broken-line regression of liver CuZn SOD activity and plasma ceruloplasmin activity, and by linear regression of whole-body Cu retention of the fish indicate that the adequate dietary Cu concentration in growing grouper is about 4~6 mg Cu/kg diet.
Experiment ΙI. Basal diet containing either adequate (6 mg Cu/kg diet, NCu) or high (48 mg Cu/kg diet, HCu) dietary copper each supplemented with three levels of vitamin C (adequate: 8.3 mg AA/kg diet, NC; 2X adequate: 16 mg AA/kg diet, HC; and 4X adequate: 32 mg AA/kg diet, HHC). Six experimental diets (NCu-NC: 6 mg Cu/kg diet, 8.3 mg AA/kg diet; NCu-HC: 6 mg Cu/kg diet, 16 mg AA/kg diet; NCu-HHC: 6 mg Cu/kg diet, 32 mg AA/kg diet; HCu-NC: 48 mg Cu/kg diet, 8.3 mg AA/kg diet; HCu-HC: 48 mg Cu/kg diet, 16 mg AA/kg diet; and HCu-HHC: 48 mg Cu/kg diet, 32 mg AA/kg diet) were each fed to triplicate groups of fish (initial body weight 12.21 ± 0.02 g) for 8 weeks. In the adequate dietary vitamin C group, fish fed the NCu-NC diet had significantly (p<0.05) higher weight gain than fish fed the HCu-NC diet; whole body and hepatic Cu concentrations were higher in fish fed the HCu-NC diet than fish fed the NCu-NC diet; fish fed the NCu-NC diet had higher leukocyte superoxide anion production ratio than fish fed the HCu-NC diet. In the high dietary Cu group, fish fed the HCu-HHC diet had higher weight gain than fish fed the HCu-NC diet; whole body and hepatic Cu concentrations were higher in fish fed the HCu-NC diet than fish fed the HCu-HHC diet; fish fed the HCu-HHC diet had higher leukocyte superoxide anion production ratio than fish fed the HCu-NC diet. These data suggest that depressed growth and immunity and high tissue Cu accumulation in grouper due to high Cu ingestion could be improved by high dietary vitamin C supplementation.
目錄
總摘要(中文).........................I
總摘要(英文) ........................III
文獻整理...........................1
實驗一:石斑魚稚魚銅之需求量及其對免疫反應之影響
摘要...........................20
前言...........................21
材料方法.........................23
結果...........................39
討論...........................56
實驗二:銅與維生素C之交互作用及其對石斑魚稚魚成長及免疫反應
之影響
摘要...........................63
前言...........................64
材料方法.........................66
結果...........................76
討論...........................89
總結論............................94
參考文獻...........................95
表目錄
表一、魚類對銅之需求量..................10
表二、過量銅對魚類之影響.................12
表三、魚類對維生素C之需求量及來源............15
表四、魚類銅與維生素C之交互關係.............19
表五、實驗一基礎飼料組成.................24
表六、實驗一飼料之一般成份................26
表七、石斑魚稚魚餵食不同銅含量飼料八週後之增重百分率、飼
料效率及存活率...................42
表八、石斑魚稚魚餵食不同銅含量飼料八週後之蛋白質效率及肝
體比........................43
表九、石斑魚稚魚餵食不同銅含量飼料八週後之體組成.....44
表十、石斑魚稚魚餵食不同銅含量飼料八週後紅血球計數、血比
容與血紅素濃度...................45
表十一、石斑魚稚魚餵食不同銅含量飼料八週後之平均紅血球體
積、平均紅血球血紅素含量與平均紅血球血紅素濃度..46
表十二、石斑魚稚魚餵食不同銅含量飼料八週後之血漿藍胞漿素
活性.......................47
表十三、石斑魚稚魚餵食不同銅含量飼料八週後之魚體與肝臟銅
濃度.......................48
表十四、石斑魚稚魚餵食不同銅含量飼料八週後之肝臟TBARS
值........................49
表十五、石斑魚稚魚餵食不同銅含量飼料八週後肝臟超氧化歧
酶活性、銅鋅超氧化歧酶活性及錳超氧化歧酶活性...50
表十六、石斑魚稚魚餵食不同銅含量飼料八週後之白血球超氧
陰離子產率....................51
表十七、石斑魚稚魚餵食不同銅含量飼料八週後之全魚體銅保
留量.......................52
表十八、實驗二基礎飼料組成.................67
表十九、實驗二飼料中銅與維生素C之分析值.........69
表二十、實驗二飼料之一般成份...............70
表二十一、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週
後之增重百分率、飼料效率及存活率........79
表二十二、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週
後之蛋白質效率及肝體比.............80
表二十三、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週
後之體組成...................81
表二十四、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週
後紅血球計數、血比容與血紅素濃度.........82
表二十五、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週
後之平均紅血球體積、平均紅血球血紅素含量與平
均紅血球血紅素濃度...............83
表二十六、石斑魚稚魚餵食不同含量之銅及維生素C八週後之
魚體與肝臟中銅濃度................84
表二十七、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週
後之肝臟中維生素C濃度.............85
表二十八、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週
後肝臟TBARS值................86
表二十九、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週
後肝臟超氧化歧酶活性、銅鋅超氧化歧酶活性及錳
超氧化歧酶活性.................87
表三十、石斑魚稚魚餵食不同含量之銅及維生素C飼料八週後
之白血球超氧陰離子產率..............88










圖目錄
圖一、銅的吸收、運送與排出................6
圖二、飼料中實際銅含量對石斑魚稚魚血漿藍胞漿素活性之
影響........................53
圖三、飼料中實際銅含量對石斑魚稚魚肝臟銅鋅超氧化歧酶
活性之影響.....................54
圖四、飼料中實際銅含量對石斑魚稚魚全魚體銅保留量之影
響.........................55
參考文獻
Aguirre, P., Gatlin, D.M., ΙΙΙ, 1999. Dietary vitamin C requirement of red drum Sciaenops ocellatus. Aquacult. Nutr. 5, 247-249.
Anderson, D.P., Dixon, O.W., Bodammer, J.E., Lizzio, E.F., 1989. Suppression of antibody-producing cells in rainbow trout spleen sections exposed to copper in vitro. J. Aquat. Anim. Health 1, 57-61.
Anderson, D.P., Siwicki, A.K., 1993. Basic hematology and serology for fish health programs. In: Shariff, M., Arthur, J.R., Subasinghe, R.P. (Eds.), Diseases in Asian Aquaculture II. Fish Health Section, Asian Fisheries Society, Manila, pp. 185-202.
Andrews, J.W., Murai, T., 1975. Studies on the vitamin C requirements of channel catfish (Ictalurus punctatus). J. Nutr. 105, 557-561.
Aoyagi, S., Baker, D.H., 1994. Copper-amino acid complexes are partially protected against inhibitory effects of L-cysteine and L-ascorbic acid on copper absorption in chicks. J. Nutr. 124, 388-395.
Association of Official Analytical Chemists (A.O.A.C.), 1995. Official Methods of Analysis, 16th ed. AOAC, Arlington, VA.
Atanasiu, R.L., Stea, D., Mateescu, M.A., Vergely, C., Dalloz, F., Briot, F., Maupoil, V., Nadeau, R., Rochette, L., 1998. Direct evidence of caeruloplasmin antioxidant properties. Mol. Cell Biochem. 189, 127-135.
Atwood, C.S., Scarpa, R.C., Huang, X., Moir, R.D., Jones, W.D., Fairlie, D.P., Tanzi, R.E., Bush, A.I., 2000. Characterization of copper interactions with Alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J. Neurochem. 75, 1219-1233.
Baker, R.T.M., Handy, R.D., Davies, S.J., Snook, J.C., 1998. Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus. Mar. Environ. Res. 45, 357-365.
Berntssen, M.H.G., Hylland, K., Wendelaar Bonga, S.E., Maage, A., 1999a. Toxic levels of dietary copper in Atlantic salmon (Salmo salar L.) parr. Aquat. Toxicol. 46, 87-99.
Berntssen, M.H.G., Lundebye, A.K., Maage, A., 1999b. Effects of elevated dietary copper concentrations on growth, feed utilisation and nutritional status of Atlantic salmon (Salmo salar L.) fry. Aquaculture 174, 167-181.
Berntssen, M.H.G., Lundebye, A.K., Hamre, K., 2000. Tissue lipid peroxidative responses in Atlantic salmon (Salmo salar L.) parr fed high levels of dietary copper and cadmium. Fish Physiol. Biochem. 23, 35-48.
Blazer, V.S., 1991. Piscine macrophage function and nutrional influence: a review. J. Aquat. Anim. Health 3, 77-86.
Botash, A.S., Nasca, J., Dubowy, R., Weinberger, H.L., Oliphant, M., 1992. Zinc induced copper deficiency in an infant. Am. J. Dis. Child 146, 709-711.
Bremner, I., 1998. Manifestations of copper excess. Am. J. Clin. Nutr. 67, 1069-1073.
Brise, H., Hallberg, L., 1962. Effect of ascorbic acid on iron absorption. Acta. Med. Scand. Suppl. 376, 51-58.
Brix, K.V., DeForest, D.K., Adams, W.J., 2001. Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. Envir. Toxicol. Chem. 20, 1846-1856.
Buettner, G.R., 1993. The packing order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol and ascorbate. Arch. Biochem. Biophys. 300, 535-543.
Buettner, G.R., Jurkiewicz, B.A., 1996. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat. Res. 145, 532-541.
Bury, N.R., Walker, P.A., Glover, C.N., 2003. Nutritive metal uptake in teleost fish. J. Exp. Biol. 206, 11-23.
Carlton, W.W., Henderson, W., 1965. Studies in chickens fed a copper-deficient diet supplemented with ascorbic acid, reserpine and diethyl stilbestrol. J. Nutr. 85, 67.
Cecconi, I., Scaloni, A., Rastelli, G., Moroni, M., Vilardo, P.G., Costantino, L., Cappiello, M., Garland, D., Carper, D., Petrash, J.M., Del Corso, A., Mura, U., 2002. Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism. J. Biol. Chem. 277, 42017-42027.
Chandra, R.K., 1997. Nutrition and immune system: an introduction. Am. J. Clin. Nutr. 66, 460-463.
Cheng, A.C., Wu, J.D., Yang, S.D., Liou, C.H., 2005. Dietary phosphorus requirement of juvenile malabar grouper (Epinephelus malabaricus). J. Fish. Soc. Taiwan 32, 41-52.
Cheryan, M., 1980. Phytic acid interaction in food systems. Crit. Rev. Food Sci. Nutr. 13, 297-335.
Clearwater, S.J., Baskin, S.J., Wood, C.M., McDonald, D.G., 2000. Gastrointestinal uptake and distribution of copper in rainbow trout. J. Exp. Biol. 203, 2455-2466.
Clearwater, S.J., Farag, A.M., Meyer, J.S., 2002. Bioavailability and toxicity of dietborne copper and zinc to fish. Comp. Biochem. Physiol. 132, 269-313.
Cowey, C.B., 1976. Use of synthetic diets and biochemical criteria in the assessment of nutrient requirement of fish. J. Fish. Res. Board. Can. 33, 1040-1045.
Cox, D.W., 1999. Disorders of copper transport. Br. Med. Bull. 55, 544-555.
Dabrowski, K., Hinterleitner, S., Sturmbauer, C., El-Fiky, N., Wieser, W., 1988. Do carp larvae require vitamin C? Aquaculture 72, 295-306.
De Martinez, M.C.C., 1990. Vitamin C requirement of the Mexican native cichild Cichlasoma urophthalmus (Gunther). Aquaculture 86, 409-416.
Dhanapakiam, P., Ramasamy, V.K., 2001. Toxic effects of copper and zinc mixtures on some haematological and biochemical parameters in common carp, Cyprinus carpio (Linn). J. Environ. Biol. 22, 105-111.
DiSilvestro, R.A., 1989. Copper activation of superoxide dismutase in rat erythrocytes. Arch. Biochem. Biophys. 274, 298-303.
Ellis, A.E., 1989. The immunology of teleosts. In: Roberts, R.J. (Ed.), Fish Pathology. Bailliere Tindal, London, pp. 135-139.
Ellis, A.E., 1999. Immunity to bacteria in fish. Fish Shellfish Immunol. 9, 291-308.
Evans, D.L., Leary, J.H., III, Jaso-Friedmann, L., 2001. Nonspecific cytotoxic cells and innate immunity: regulation by programmed cell death. Dev. Comp. Immunol. 25, 791-805.
Evans, G.W., Majors, P.F., Cornatzer, W.E., 1970. Ascorbic acid interaction with metallothionein. Biochem. Biophys. Res. Commun. 41, 1244-1247.
FAO Yearbooks of Fisheries Satistics, 2005. Food Agriculture Organization of the United Nations, Rome.
Fattman, C.L., Schaefer, L.M., Oury, T.D., 2003. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 35, 236-256.
Finley, E.B., Cerklewski, F.L., 1983. Influence of ascorbic acid supplementation on copper status in young adult man. Am. J. Clin. Nutr. 37, 553-556.
Flohé, L., Ötting, F., 1984. Superoxide dismutase assays. Methods Enzymol. 105, 93-104.
Fox, P.L., Mazumder, B., Ehrenwald, E., Mukhopadhyay, C.K., 2000. Ceruloplasmin and cardiovascular disease. Free Radic. Biol. Med. 28, 1735-1744.
Freedman, J.H., Ciriolo, M.R., Peisach, J., 1989. The role of glutathione in copper metabolism and toxicity. J. Biol. Chem. 264, 5598-5605.
Gaetke, L.M., Chow, C.K., 2003. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147-163.
Galhardi, C.M., Diniz, Y.S., Faine, L.A., Rodrigues, H.G., Burneiko, R.C., Ribas, B.O., Novelli, E.L., 2004. Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem. Toxicol. 42, 2053-2060.
Gatlin, D.M., III, Wilson, R.P., 1986. Dietary copper requirement of fingerling channel catfish. Aquaculture 54, 277-285.
Gennis, R., Ferguson-Miller, S., 1995. Structure of cytochrome c oxidase, energy generator of aerobic life. Science 269, 1063-1064.
Gouillou-Coustans, M.F., Bergot, P., Kaushik, S.J., 1998. Dietary ascorbic acid needs of common carp (Cyprinus carpio) larve. Aquaculture 161, 453-461.
Grosell, M., Wood, C.M., 2002. Copper uptake across rainbow trout gills: mechanisms of apical entry. J. Exp. Biol. 205, 1179-1188.
Grosell, M.H., Hogstrand, C., Wood, C,M., 1997. Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 38, 257-276.
Grosell, M.H., Hogstrand, C., Wood, C.M., 1998. Renal Cu and Na excretion and hepatic Cu metabolism in both Cu acclimated and nonacclimated rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 40, 275-291.
Guerrant, R.L., Lima, A.A., Davidson, F., 2000. Micronutrients and infection: interactions and implications with enteric and other infections and future priorities. J. Infect. Dis. 182, 134-138.
Halver, J.E., 1972. The role of ascorbic acid in fish disease and tissue repair. Bull. Jpn. Soc. Sci. Fish. 38, 79-92.
Halver, J.E., Ashley, L.M., Smith, R.E., 1969. Ascorbic acid requirement of coho salmon and rainbow trout. Trans. Am. Fish. Soc. 98, 762-771.
Hanaki, A., 1969. Copper-catalyzed oxidation of ascorbic acid. Chem. Pharm. Bull. 17, 1839-1846.
Handy, R.D., 1996. Dietary exposure to toxic metals in fish. In: Taylor, E.W. (Ed.), Toxicology of Aquatic Pollution: Physiological, Cellular and Molecular Approaches. Cambridge University Press, Cambridge, UK, pp. 29-60.
Harris, E.D., 1986. Biochemical defect in chick lung resulting from copper. J. Nutr. 116, 252-258.
Harris, E.D., 1992. Copper as a cofactor and regulator of copper-zinc superoxide dismutase. J. Nutr. 122, 636-640.

Harris, E.D., 1993. The transport of copper. Prog. Clin. Biol. Res. 380, 163-179.
Harris, E.D., 2000. Cellular copper transport and metabolism. Annu. Rev. Nutr. 20, 291-310.
Hart, E.B., Steenbock, J., Waddell, J., Elvehjem, C.A., 1928. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. J. Biol. Chem. 77, 797-812.
Hellman, N.E., Gitlin, J.D., 2002. Ceruloplasmin metabolism and function. Ann. Rev. Nutr. 22, 439-458.
Hossain, M.A., Shariff, M., 1992. Effect of copper on humoral response in gold fish, Carassius auratus Linnaeus. In: Shariff, M., Subasinghe, R.P., Arthur, J.R. (Eds.), Diseases in Asian Aquaculture I. Fish Health Section, Asian Fisheries Society, Manila, pp. 371-377.
Hunt, C.E., Carlton, W.W., 1965. Cardiovascular lesions associated with experimental copper deficiency in the rabbit. J. Nutr. 87, 385-393.
Hunt, C.E., Landesman, J., Newbeme, P.M., 1970. Copper deficiency in chicks: effects of asconbic acid on iron, copper, cytochnome oxidase activity and aontic mucopolysaccharides. Br. J. Nutr. 24, 607-6l4.
Julshamn, K., Andersen, K.J., Ringdal, O., Brenna, J., 1988. Effect of dietary copper on the hepatic concentration and subcellular distribution of copper and zinc in the rainbow trout (Salmo gairdneri). Aquaculture 73, 143-155.
Kadiiska, M.B., Hanna, P.M., Jordan, S.J., Mason, R.P., 1993. Electron spin resonance evidence for free radical generation in copper-treated vitamin E- and selenium-deficient rats: in vivo spin-trapping investigation. Mol. Pharmacol. 44, 222-227.
Kamunde, C., Grosell, M., Higgs, D., Wood, C.M., 2002. Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): interactions between dietary and waterborne copper uptake. J. Exp. Biol. 205, 279-290.
Kanazawa, A., Teshima, S.I., Kosshio, S., Higashi, M., Itoh, S., 1992. Effect of L-ascorbyl-2-phosphate-Mg on the yellowtail Seriola quinqueradiata as a vitamin C source. Nippon Suisan Gakkaishi 58, 337-341.
Khangarot, B.S., Tripathi, D.M., 1991. Chang in humoral and cell-mediated immune responses and in skin and respiratory surfaces of catfish, Sacchobranchus fossilis, following copper exposure. Ecotoxicol. Environ. Saf. 22, 291-308.
Kies, C., Harms, J.M., 1989. Copper absorption as affected by supplemental calcium, magnesium, manganese, selenium and potassium. Adv. Exp. Med. Biol. 258, 45-58.
Kim, S.G., Kang, J.C., 2004. Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli. Mar. Environ. Res. 58, 65-82.
Kitabchi, A.E., 1967. Ascorbic acid in steroidogenesis. Nature 215, 1385-1386.
Knox, D., Cowey, C.B., Adron, J.W., 1984. Effects of dietary zinc intake upon copper metabolism in rainbow trout (Salmo gairdneri). Aquaculture 40, 199-207.
Kojo, S., 2004. Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr. Med. Chem. 11, 1041-1064.
Lall, S.P., Bishop, F.J., 1977. Studies on mineral and protein utilization by Atlantic salmon (Salmo salar) grown in seawater. Fish Mar. Serv. Res. Dev. Tech. Rep. 688, 21.
Lanno, R.P., Slinger, S.J., Hilton, J.W., 1985a. Maximum tolerable and toxicity levels of dietary copper in rainbow trout (Salmo gairdeneri Richardson) Aquaculture 49, 257-268.
Lanno, R.P., Slinger, S.J., Hilton, J.W., 1985b. Effect of ascorbic acid on dietary copper toxicity in rainbow trout (Salmo gairdneri Richardson). Aquaculture 49, 269-287.
Lee, M., Shiau, S., 2003. Increase of dietary vitamin C improves haemocyte respiratory burst response and growth of juvenile grass shrimp, Penaeus monodon, fed with high dietary copper. Fish Shellfish Immunol. 14, 305-315.

Lemaire-Gony, S., Lemaire, P., Pulsford, A.L., 1995. Effects of cadium and benzo (a) pyrene on the immune system, gill ATPase and EROD activity of European sea bass Dicentrarchus labrax. Aquat. Toxicol. 31, 297-313.
Li, J., Quabius, E.S., Wendelaar Bonga, S.E., Flik, G., Lock, R.A.C., 1998. Effects of water-borne copper on branchial chloride cells and Na+/K+-ATPase activities in Mozambique tilapia (Oreochromis mossambicus). Aquat. Toxicol. 43, 1-11.
Lin, M.F., Shiau, S.Y., 2004. Requirements of vitamin C (L-ascorbyl-2- monophosphate-Mg and L-ascorbyl-2-monophosphate-Na) and its effects on immune response of grouper, Epinephelus malabaricus. Aquacult. Nutr. 10, 327-333.
Lin, M.F., Shiau, S.Y., 2005a. Dietary L-ascorbic acid effects growth, nonspecific immune responses and disease resistance in juvenil grouper, Epinephelus malabaricus. Aquaculture 244, 215-221.
Lin, M.F., Shiau, S.Y., 2005b. Requirements of vitamin C (L-ascorbyl-2-sulfate and L-ascorbyl-2-polyphosphate) and its effects on non specific immune responses of grouper, Epinephelus malabaricus. Aquacult. Nutr. 11, 1-7.
Lin, Y.H., Shiau, S.Y., 2005c. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 250, 356-363.
Linder, M.C., Hazegh-Azam, M., 1996. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 63, 797-811.
Linder, M.C., Wooten, L., Cerveza, P., Cotton, S., Shulze, R., Lomeli, N., 1998. Copper transport. Am. J. Clin. Nutr. 67, 965-971.
Lorentzen, M., Maage, A., Julshamn, K., 1998. Supplementing copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations. Aquacult. Nutr. 4, 67-72.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
Lukasewycz, O.A., Prohaska, J.R., 1990. The immune response in copper deficiency. Ann. N.Y. Acad. Sci. 587, 147-159.
Lundebye, A.K., Berntssen, M.H.G., Wendelaar Bonga, S.E., Maage, A., 1999. Biochemical and physiological responses in Atlantic salmon (Salmo salar) following dietary exposure to copper and cadmium. Mar. Pollut. Bull. 39, 137-144.
Luza, S.C., Speisky, H.C., 1996. Liver copper storage and transport during development: implications for cytotoxicity. Am. J. Clin. Nutr. 63, 812-820.
Lynch, S.M., Frei, B., Morrow, J.D., Roberts, L.J., ΙΙ, Xu., A., Jackson, T., Reyna, R., Klevay, L.M., Vita, J.A., Keaney, J.F., ΙΙ, 1997. Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler. Thromb. Vasc. Biol. 17, 2975-2981.
Mackie, A.M., Mitchell, A.I., 1985. Identification of gustatory feeding stimulants for fish-applications in aquaculture. In: Cowey, C.B., Mackie, A.M., Bell, J.B. (Eds.), Nutrition and Feeding in Fish. Academic Press, London, pp. 177-189.
Mahajan, C.L., Agrawal, N.K., 1980. Nutritional requirements of ascorbic acid by Indian major carp Cirrhina mrigala during early growth. Aquaculture 19, 37-48.
Marr, J.C.A., Lipton, J., Cacela, D., Hansen, J.A., Bergman, H.L., Meyer, J.S., Hogstrand, C., 1996. Relationship between copper exposure duration, tissue copper concentration, and rainbow trout growth. Aquat. Toxicol. 36, 17-30.
Miller, P.A., Lanno, R.P., McMaster, M.E., Dixon, D.G., 1993. Relative contribution of dietary and waterborne copper to tissue copper burdens and waterborne copper uptake in rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 50, 1683-1689.
Murai, T., Andrews, J.W., Bauerfeind, J.C., 1978. Use of L-ascorbic acid, ethocel coated ascorbic acid and ascorbate-2-sulfate in diets for channel catfish Ictalurus punctatus. J. Nutr. 108, 1761-1766.
Murai, T., Andrews, J.W., Smith, R.G., ΙΙ, 1981. Effects of dietary copper on channel catfish. Aquaculture 22, 353-357.
Myllyla, R., Kuutti-Savolainen, E.R., Kivirikko, K.I., 1978. The role of ascorbate in the prolyl hydroxylase reaction. Biochem. Biophys. Res. Commun. 83, 441-448.
National Academy of Sciences, 2000. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academy Press, Washington, DC, pp. 224-257.
Ogino, C., Yang, G., 1980. Requirements of carp and rainbow trout for dietary manganese and copper. Bull. Jpn. Soc. Sci. Fish. 46, 455-458.
Okado-Matsumoto, A., Fridovich, I., 2001. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem. 276, 38388-38393.
Pick, E., Mizel, D., 1981. Rapid microassay for the measurement of superoxid and hydrogen peroxide production by macrophage in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods 46, 211-216.
Powell, S.R., 2000. The antioxidant properties of zinc. J. Nutr. 130, 1447-1454.
Rayssiguier, Y., Gueux, E., Bussiere, L., Mazur, A., 1993. Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J. Nutr. 123, 1343-1348.
Rossmini, R.M., Perlo, F., Pérez-alvarez, J.A., Pagán-morenno, M.J., Gaga-gago, A., López-santoveňa, F., Aranda-catalá, V., 1996. TBA test by an extractive method applied to paté. Meat Sci. 42, 103-110.
Sandstead, H.H., 1982. Copper bioavailability and requirements. Am. J. Clin. Nutr. 35, 809-814.
Sato, M., Hatano, Y., Yoshnaka, R., 1991. L-Ascorbicyl-2-sulfate as a dietary vitamin C source for rainbow trout (Oncorhynchus mykiss). Nippon Suisan Gakkaishi 57, 717-721.
Sayer, M.D.J., Reader, R.P., Morris, R., 1992. Embryonic and larval development of larval brown trout, Salmo trutta L.: exposure to aluminium, copper, lead or zinc in soft acid water. J. Fish Biol. 38, 431-455.
Scheinberg, I.H., Sternlieb, I., 1996. Wilson disease and idiopathic copper toxicosis. Am. J. Clin. Nutr. 63, 842-845.
Schosinsky, K.H., Lehmann, H.P., Beeler, M.F., 1974. Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin. Chem. 20, 1556-1563.
Sealey, W.M., Gatlin, D.M., III, 1999. Dietary vitamin C requirement of hybrid striped bass Morone chrysops × M. saxatilis. J. World Aquacult. Soc. 30, 297-301.
Secombes, C.J., 1996. The non-specific immune system: cellular defenses. In: Iwama, G., Nakanishi, T. (Eds.), The fish immune system: Organism, Pathogen, and Environment. Acdemic Press, San Diego, California, USA, pp. 63-103.
Shariff, M., Jayawardena, P.A., Yusoff, F.M., Subasinghe, R., 2001. Immunological parameters of Javanese carp Puntius gonionotus (Bleeker) exposed to copper and challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 11, 281-291.
Shiau, S.Y., Hsieh, J.F., 2001. Quantifying the dietary potassium requirement of juvenile hybrid tilapia (Oreochromis niloticus × O. aureus). Br. J. Nutr. 85, 213-218.
Shiau, S.Y., Hsu, T.S., 1995. Tissue storage of ascorbic acid in tilapia, Oreochromis niloticus × O. aureus fed L-ascorbic acid, L-ascorbyl-2-sulfate or L-ascorbyl-2-monophosphate. Fish. Sci. 61, 1043-1044.
Shiau, S.Y., Hsu, T.S., 1999. Quantification of vitamin C requirement for juvenile hybrid tilapia, Oreochromis niloticus × O. aureus, with L-ascorbyl-2-monophosphate-Na and L-ascorby-2-monophosphate-Mg. Aquaculture 175, 317-326.
Shiau, S.Y., Jan, F.L., 1992. Dietary ascorbic acid requirement of juveile tilapia Oreochromis niloticus × O. aureus. Nippon Suisan Gakkaishi 58, 671-675.
Shiau, S.Y., Lu, L.S., 2004. Dietary sodium requirement determined for juvenile hybrid tilapia (Oreochromis niloticus × O. aureus) reared in fresh water and seawater. Br. J. Nutr. 91, 585-590.
Shiau, S.Y., Ning, Y.C., 2003. Estimating of dietary copper requirements for juvenile tilapia, Oreochromis niloticus × O. aureus. Anim. Sci. 77, 287-292.
Smith, C.H., Bidlack, W.R., 1980. Interrelationship of dietary ascorbic acid and iron on the tissue distribution of ascorbic acid, iron and copper in female guinea pigs. J. Nutr. 110, 1398-1408.
Smith-Mungo, L.I., Kagan, H.M., 1998. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 16, 387-398.
Soliman, A.K., Jauncey, K., Roberts, R.J., 1994. Water-soluble vitamin requirements of ascorbic acid (vitamin C) requirement of Nile tilapia, Oreochromis niloticus L. Aquacult. Fish. Manage. 25, 269-278.
Stickney, R.R., McGeachin, R.B., Lewis, D.H., Marks, J., Riggs, A., Sis, R.F., Robinson, E.H., Wurts, W., 1984. Response of Tilapia aurea to dietary vitamin C. J. World Maricult. Soc. 14, 179-185.
Tamura, T., Hong, K.H., Mizuno, Y., Johnston, K.E., Keen, C.L., 1999. Folate and homocysteine metabolism in copper-deficient rats. Biochim. Biophys. Acta. 1427, 351-356.
Tapiero, H., Townsend, D.M., Tew, K.D., 2003. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 57, 386-398.
Tolbert, B.M., 1985. Metabolism and function of ascorbic acid and its metabolites. Int. J. Vitam. Nutr. Res. Suppl. 27, 121-138.
Tolbert, B.M., Downing, M., Carlson, R.W., Knight, M.K., Baker, E.M., 1975. Chemistry and metabolism of ascorbic acid and ascorbate sulfate. Ann. N.Y. Acad. Sci. 258, 48-69.
Turnlund, J.R., 1991. Bioavailability of dietary minerals to humans: the stable isotope approach. Crit. Rev. Food Sci. Nutr. 30, 387-396.
Turnlund, J.R., 1998. Human whole-body copper metabolism. Am. J. Clin. Nutr. 67, 960-964.
Turnlund, J.R., Keyes, W.R., Peiffer, G.L., Scott, K.C., 1998. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am. J. Clin. Nutr. 67, 1219-1225.
Turnlund, J.R., Scott, K.C., Peiffer, G.L., Jang, A.M., Keen, C.L., Sakanashi, T.M., 1997. Copper status of young men consuming a low copper diet. Am. J. Clin. Nutr. 65, 72-78.
Uauy, R., Olivares, M., Gonzalez, M., 1998. Essentiality of copper in humans. Am. J. Clin. Nutr. 67, 952-959.
Uchiyama, M., Mihara, M., 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271-278.
Uriu-Adams, J.Y., Keen, C.L., 2005. Copper, oxidative stress, and human health. Mol. Aspects Med. 26, 268-298.
Van Campen, D., Gross, E., 1968. Influence of ascorbic acid on the absorption of copper by rat. J. Nutr. 95, 617-622.
Van den Berg, G.J., Beynen, A.C., 1992. Influence of ascorbic acid supplementation on copper metabolism in rats. Br. J. Nutr. 68, 701-715.
Van den Berg, G.J., Yu, S., Lemmens, A.G., Beynen, A.C., 1994. Ascorbic acid feeding of rats reduces copper absorption, causing impaired copper status and depressed biliary copper excretion. Biol. Trace Elem. Res. 41, 47-58.
Werman, M.J., Bhathena, S.J., Turnlund, J.R., 1997. Dietary copper intake influence skin lysyl oxidase in young man. J. Nutr. Biochem. 8, 201-204.
Wilson, R.P., El Naggar, G., 1992. Potassium requirement of fingerling channel catfish, Ictalurus purtatus. Aquaculture 108, 169-175.
Woodward, D.F., Farag, A.M., Bergman, H.L., Delonay, A.J., Little, E.E., Smith, C.E., Barrows, F.T., 1995. Metals-contaminated benthic invertebrates in the Clark Fork River, Montana: effects on age-0 brown trout and rainbow trout. Can. J. Fish. Aquat. Sci. 52, 1994-2004.
Wright, H.S., Guthrie, H.A., Qi Wang, M., Bernardo, V., 1991. The 1987-1988 nationwide food consumption survey: an update on the nutrient intake of respondents. Nutr. Today 26, 21-27.
Yamamoto, Y., Hayama, K., Ikeda, S., 1981. Effect of dietary ascorbic acid on the copper poisoning in rainbow trout. Bull. Jpn. Soc. Sci. Fish. 47, 1085-1089.
Yamamoto, Y., Ishii, T., Sato, M., Ikeda, S., 1977. Effect of dietary ascorbic acid on the accumulation of copper in carp. Bull. Jpn. Soc. Sci. Fish. 43, 989-993.
Yamamoto, Y., Sato, M., Ikeda, S., 1978. Existence of L-gulonolactone oxidase in some teleosts. Bull. Jpn. Soc. Sci. Fish. 44, 775-779.
Zelikoff, J.T., 1993. Metal pollution-induced immunomodulation in fish. Annu. Rev. Fish Dis. 3, 305-325.
行政院農業委員會漁業署,2005。中華民國台灣地區漁業年報九十四年版。
李武忠,1988,魚類對礦物質需求探討。飼料營養雜誌,4:90-97。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top