跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/09 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王聖欽
研究生(外文):Sheng-Ching Wang
論文名稱:探討以吳郭魚內臟粗酵素液水解蛋白質之抗氧化活性
論文名稱(外文):Antioxidative activity in various protein hydrolysates by using the crude enzyme extracts of Tilapia viscera
指導教授:邱思魁邱思魁引用關係
指導教授(外文):Tze-Kuei Chiou
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:吳郭魚抗氧化水解物
外文關鍵詞:Tilapiaantioxidative activityhydrolysates
相關次數:
  • 被引用被引用:2
  • 點閱點閱:498
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究探討以吳郭魚內臟粗酵素液水解蛋白粉 (EAP)、濃縮乳清蛋白 (WPC)、分離大豆蛋白 (SPI) 及吳郭魚肉乾物 (TMP) 等水解物之抗氧化活性。蛋白質基質添加粗酵素液後 pH 調整至 4.0、7.0 及 9.0,於 50℃ 水解12 小時之水解液製成乾物,測定 α,α-diphenyl-β-picrylhydrazyl (DPPH) 自由基清除率、還原力、亞麻油酸過氧化抑制率、亞鐵離子螯合率及超氧陰離子自由基清除率等。整體上,以 WPC 於 pH 7.0 及 SPI 於 pH 4.0 兩者水解物的抗氧化活性較高,但還原力以TMP 於 pH 4.0 的水解物高於其他水解物。其次針對 WPC 於 pH 7.0 與 SPI 於 pH 4.0 進行溫度 (40 及 50℃) 和水解時間 (0~24 小時) 的影響,結果顯示均以 40℃、12 小時水解為較佳的條件。
依據上述結果,WPC 於 pH 7.0 及 SPI 於 pH 4.0 在 40℃ 水解 12 小時之水解液製成乾物,以及水解物再經 80% 乙醇沉澱處理之低分子量區分 (LMW) 同樣製成乾物,比較不同濃度下的抗氧化活性。WPC 組於還原力、亞鐵離子螯合能力、DPPH 自由基及超氧陰離子清除能力等活性高於 WPC-LMW 組,但抑制亞麻油酸過氧化能力則以後者較高。SPI 組於抑制亞麻油酸過氧化能力、亞鐵離子螯合能力、DPPH 自由基及超氧陰離子清除能力等活性高於 SPI-LMW 組,但還原力則以後者較高。四種乾物作比較時,SPI 組之亞麻油酸過氧化抑制率 (IC50 為 0.055 mg/mL)、亞鐵離子螯合率 (IC50 為 18.68 mg/mL) 及超氧陰離子自由基清除率 (IC50 為 0.10 mg/mL) 有最高的活性,而 WPC 組則以還原力 (IC50 為 2.12 mg/mL) 及 DPPH 清除率 (IC50 為 0.89 mg/mL)最高。以 HPLC 法測定 DPPH 自由基清除率之 IC50 值較之分光法降低 36.4~58.9%。
另測定 WPC 於 pH 7.0 及 SPI 於 pH 4.0 在 40℃ 水解 0~24 小時之水解物對血管升壓素轉換酶 (angiotensin I-converting enzyme, ACE) 之抑制能力,結果顯示抑制率隨水解時間的延長而上升,水解 24 小時之水解物的 IC50 值 (0.71~0.96 mg/mL) 的抑制效果低於其低分子量區分乾物 (0.24~0.35 mg/mL )。
Abstract

This study investigated the antioxidative activity in the hydrolysates of egg albumin protein (EAP), whey protein concentrate (WPC), soy protein isolate (SPI) and Tilapia muscle protein (TMP) by using the crude extract of tilapia viscera as the enzyme source. Protein substrates were hydrolyzed at 50℃ for 12 hours at different pH values (4.0, 7.0 and 9.0).The lyophilized hydrolysates were then measure for the scavenging effect on α,α-diphenyl-β-picrylhydrazyl (DPPH) radical, reducing power, inhibition on linoleic acid peroxidation, Fe2+-chelating effect, and scavenging effect on superoxide anion radical. On the whole, the WPC (at pH 7.0) and SPI (at pH 4.0) hydrolysates exhibited higher antioxidative activities, but the TMP (at pH 4.0) hydrolysate had the highest reducing power than other hydrolysates. The WPC (at pH 7.0) and SPI (at pH 9.0) were chosen to evaluate the effect by hydrolsis temperature (40℃ and 50℃) and time (0~24 hours). The results showed that the hydrolysis carried out at 40℃ for 12 hours was a better condition.
Accordingly, the lyophilized hydrolysates of WPC (at pH 7.0) and SPI (at pH 4.0), which were hydrolyzed at 40℃ for 12 hours, together with their low-molecule-weight fractions (LMW), which were treated with 80% ethanol to precipitate proteins were prepared and measured for antioxidative activity at different concentrations. The reducing power, Fe2+-chelating effect, and DPPH radical and superoxide anion scavenging effects in the WPC hydrolysate were higher than that in WPC-LMW. On the contrary, the inhibition on linoleic acid peroxidation were stronger in the latter. The SPI hydrolysate had higher inhibition on linoleic acid peroxidation, Fe2+-chelating effect, and DPPH radical and superoxide anion scavenging effects, but SPI-LMW was higher in reducing power. Among the four lyophilized powders , SPI hydrolysate was the highest in the inhibition on linoleic acic peroxidation (IC50 = 0.055 mg/mL), Fe2+-chelating effect (IC50 = 18.68 mg/mL), and scavenging effect on superoxide anion radical (IC50 = 0.10 mg/mL). On the contrary, the WPC hydrolysate was the highest in reducing power (IC50 = 2.12 mg/mL) and scavenging effect on DPPH radical (IC50 = 0.89 mg/mL). Regarding the measurement on scavenging DPPH radical, here was found that the IC50 values determined by HPLC method decreased by 36.4~58.9% as compared with that by photometric method.
The inhibitory activity against angiotensin I-converting enzyme (ACE) by the lyophilized hydrolysates of WPC (at pH 7.0) and SPI (at pH 4.0) after hydrolyzing at 40℃ for 0~24 hours. The data showed that the inhibitory activity on ACE increased with hydrolysis time. The 24-hour hydrolysates (IC50 = 0.71~0.96 mg/mL) exhibited lower ACE inhibitory activity than their low-molecule-weight fractions (IC50 = 0.24~0.35 mg/mL ).
目 錄
頁次
中文摘要……………………………………………………………I
英文摘要……………………………………………………………III
目錄…………………………………………………………………V
表目錄………………………………………………………………VIII
圖目錄………………………………………………………………IX
壹、研究背景與目的………………………………………………1
貳、文獻整理………………………………………………………3
一、吳郭魚之簡介……………………………………………….3
(一)生態習性.………………………………………………….3
(二)養殖現況……………………………………………………3
(三)加工利用……………………………………………………4
二、蛋白質水解條件…………………………………………….4
(一)化學水解……………………………………………………4
(二)酵素水解……………………………………………………4
1. 酵素種類…………………………………………………5
2. pH 值與溫度………………………………………….…6
3. 酵素濃度…………………………………………………6
4. 抑制劑和食鹽濃度………………………………………7
三、水產食品的酵素…………………………………………….7
四、蛋白質水解物的特性與應用……………………………….8
(一)水產蛋白質來源……………………………………………10
(二)其他動物蛋白質來源………………………………………12
(三)植物蛋白質來源……………………………………………13
五、氧化作用與自由基………………………………………….14
六、抗氧化劑…………………………………………………….16
(一)抗氧化劑的來源……………………………………………16
(二)抗氧化劑作用原理及種類…………………………………17
1.自由基終止.……………………………………………17
2.還原劑或氧清除劑…………….………………………18
3.金屬螯合劑………………………………….…………18
4.單重氧的抑制劑……………………………………….18
參、材料與方法……………………………………………………20
一、材料………………………………………………………….20
1.實驗材料……………………………………………….20
2.化學藥品………………………………………….……20
3.使用儀器…………………………………….…………21
二、實驗項目與方法…………………………………………….21
(一)粗酵素液製備………………………………………………21
(二)粗酵素水解對蛋白抽出物抗氧化活性之影響……………21
1.pH 值的影響……….……………………….…………21
2.水解溫度和時間的影響……………….………………22
3.水解物及低分子量區分乾物不同濃度之抗氧化活性.22
(三)離子交換樹脂管柱分離…………………………….…….23
(四)蛋白水解物之抑制 ACE 活性………………………….…24
1.水解時間之影響……………………………………….24
2.水解物及低分子量乾物於不同濃度之抑制 ACE 活性24
三、化學分析方法……………………………………………….24
(一)抗氧化活性測定……………………………………………24
1.清除 DPPH 自由基能力測定….………………………24
2.還原力測定………………………………….…………25
3.抑制血紅蛋白催化亞麻油酸過氧化之能力……….…25
4.亞鐵離子離子螯合能力.………………………………26
5.捕捉超氧陰離子能力測定……………………….……26
(二)可溶性蛋白質含量測定……………………………………26
(三)胺基含量測定………………………………………………27
1.OPA 呈色法…………………………………………….27
2.Ninhydrin 呈色法…………………………………….27
(四)水解物對抑制 ACE 活性之測定………………………….27
四、統計分析…………………………………………………….28
肆、結果與討論……………………………………………………29
一、水解條件對抗氧化活性之影響…………………………….29
(一) pH 值之影響………………………………………………29
(二)水解溫度和時間的影響……………………………………34
(三)水解物及低分子量區分乾物不同濃度之抗氧化活性……40
二、離子交換樹脂管柱分離…………………………………….44
三、蛋白水解物之抑制 ACE 活性………………………………47
(一)水解時間之影響……………………………………………47
(二)水解物及低分子量區分乾物於不同濃度之抑制 ACE 活
性……………………………………………………………47
伍、結論……………………………………………………………49
陸、參考文獻………………………………………………………51
柒、表………………………………………………………………70
捌、圖………………………………………………………………85

表 目 錄
頁次
表一、蛋白質水解物之清除 DPPH 自由基能力…………………70
表二、蛋白質水解物之還原力……………………………………71
表三、蛋白水質解物之抑制亞麻油酸過氧化能力………………72
表四、蛋白質水解物之亞鐵離子螯合能力………………………73
表五、蛋白質水解物之清除超氧陰離子自由基能力……………74
表六、蛋白質水解物之可溶性蛋白質及胺基含量………………75
表七、不同水解時間及溫度之蛋白質水解物中的可溶性蛋白質及胺
基含量………………………………………………………76
表八、濃縮乳清蛋白和分離大豆蛋白水解物與其低分子量區分之抗
氧化活性 (IC50 值)………………………………………77
表九、濃縮乳清蛋白和分離大豆蛋白水解物與其低分子量區分之可
溶性蛋白質及胺基含量……………………………………78
表十、濃縮乳清蛋白與分離大豆蛋白水解物之中性、正電荷及負電
荷區分之清除 DPPH 自由基能力…………………………79
表十一、濃縮乳清蛋白與分離大豆蛋白水解物之中性、正電荷及負
電荷區分之還原力………………………………………80
表十二、濃縮乳清蛋白與分離大豆蛋白水解物之中性、正電荷及負
電荷區分之抑制亞麻油酸過氧化能力…………………81
表十三、濃縮乳清蛋白與分離大豆蛋白水解物之中性、正電荷及負
電荷區分之亞鐵離子螯合能力…………………………82
表十四、濃縮乳清蛋白與分離大豆蛋白水解物之中性、正電荷及負
電荷區分之清除超氧陰離子自由基能力………………83
表十五、濃縮乳清蛋白與分離大豆蛋白水解物之中性、正電荷及負
電荷區分之胺基含量……………………………………84

圖 目 錄
頁次
圖一、水解溫度和時間對蛋白水解物清除 DPPH 自由基能力之影
響……………………………………………………………85
圖二、水解溫度和時間對蛋白水解物還原力之影響……………86
圖三、水解溫度和時間對蛋白水解物抑制亞麻油酸過氧化之影響
………………………………………………………………87
圖四、水解溫度和時間對蛋白水解物螯合亞鐵離子效果之影響88
圖五、水解溫度和時間對蛋白水解物清除超氧陰離子自由基之影
響……………………………………………………………89
圖六、水解時間 (40℃) 對蛋白水解物抑制 ACE 活性之影響.90
圖七、濃縮乳清蛋白和分離大豆蛋白水解物在不同濃度之抑制ACE
活性…………………………………………………………91
圖八、濃縮乳清蛋白和分離大豆蛋白水解物之低分子量區分乾物
在不同濃度之抑制 ACE 活性…………………………….92
圖九、蛋白質基質於不同pH 值之水解物所含可溶性蛋白質與胺基
含量與抗氧化活性之相關性………………………………93
圖十、濃縮乳清蛋白和分離大豆蛋白於不同水解時間之水解物所
含可溶性蛋白質與胺基含量與抗氧化活性之相關性……94
圖十一、濃縮乳清蛋白和分離大豆蛋白於不同水解時間 (40℃) 之
水解物所含可溶性蛋白質與胺基含量與抗氧化活性之相關
性…………………………………………………………95
圖十二、濃縮乳清蛋白和分離大豆蛋白於不同水解時間 (50℃) 之
水解物所含可溶性蛋白質與胺基含量與抗氧化活性之相關
性…………………………………………………………96
圖十三、濃縮乳清蛋白和分離大豆蛋白之水解物及其低分子量區分
物在不同濃度之抑制亞麻油酸過氧化能力……………97
圖十四、分別以分光法和 HPLC 法測定濃縮乳清蛋白與分離大豆蛋
白之水解物及其低分子量區分物在不同濃度之 DPPH 自由
基清除能力………………………………………………98
圖十五、濃縮乳清蛋白和分離大豆蛋白之水解物及其低分子量區分
物在不同濃度之還原力…………………………………99
圖十六、濃縮乳清蛋白和分離大豆蛋白之水解物在不同濃度之亞鐵
離子螯合能力……………………………………………100
圖十七、濃縮乳清蛋白和分離大豆蛋白之水解物及其低分子量區分
物在不同濃度之清除超氧陰離子自由基能力…………101
參考文獻

毛正倫、林幸惠、曾浩洋,1996。濃縮維生素 E 油對豬油及黃豆油貯存安定性之比較。中國農業化學會誌,34(4): 429-437。
王三郎、李旭洪、張玉明,1997。利用脫臭魚精製備微生物培養基,中華生質能源學會會誌,16: 31-39。
王朝富,2002。電透析鹹鴨蛋蛋白液酵素水解物之抗氧化能力之探討。國立嘉義大學食品科學系碩士學位論文。嘉義。
于乃衡、林姿欣、楊舒雯、呂紀弘、吳宇進,2003。吳郭魚繁養殖介紹,水產種苗,64: 7-16。
朱榮昌,2001。鯖魚內臟水解物作為 Bacillus subtilis 培養基氮源生產鹼性蛋白酶,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
林玫欣,1999a。鯖魚肉與內臟水解物之抗氧化性研究。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
林澄治,1999b。軟體動物 Peptide 組成成分之比較及其生理活性之探討,國立台灣海洋大學食品科學系碩士學位論文,基隆。
林國泰,2005。蜆抽出物之抗氧化活性與其季節及產地之變動。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
吳蕙君,1998。魚貝類抽出物抗氧化性之探討。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
於柏伸,2005。牡蠣抽出物之抗氧化活性與其季節及產地之變動。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
涂汝祝,2003。日本鰻與歐洲鰻肌肽分解之差異及其對鰻肉抗氧化之影響。國立台灣海洋大學食品科學系碩士學位論文,基隆。
陳美貞,1998。鯖魚肉蛋白質水解物對血管升壓素轉換酶之抑制及其降高血壓的效果。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
陳俞伶,2005a。發酵豆乳中活性胜肽之生產。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
陳佳伶,2005b。文蛤水解物中胜肽對血管升壓素轉換酶之抑制與其純化。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
陳冠丞,2002。闊葉大豆(金門一條根)之抗氧化特性及其有效多酚類化合物之分離。國立台灣海洋大學食品科學系碩士學位論文,基隆。
彭詩純,2003。鯖魚肉酵素水解液之游離胺基酸及胜肽與抗氧化活性及苦味之關係。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
曾吉偉,2001。酵素水解魚肉生產胜肽及其抗氧化特性之研究。國立台灣海洋大學食品科學系碩士學位論文,基隆。
楊宗熙,1996。油脂氧化安定性與天然抗氧化劑效力之評估,食品工業,28(10): 22-32。
漁業署,2004。中華名國臺灣地區漁業年報。台北。
劉怡青,2004。文蛤抽出物之抗氧化活性與其季節及產地之變動。國立台灣海洋大學食品科學系碩士學位論文,基隆。
鄭靜桂,1997。蛋白質之酵素水解水解液之應用,食品工業,29(8): 27-35。
顏國欽,1993。食品安全學,藝軒出版社,台北。
饒家麟與柯文慶,2001。鯖魚蒸煮液蛋白質水解物之抗氧化特性,台灣農業化學與食品科學,39(5): 363-369。
Abe, H. 1995. Histidine-related dipeptides: distribution, metabolism and physiological function. In“Biochemistry and Molecular Biology of Fishes”, Vol. 4. Hochachka, P. W. and Mommsen, T. P.(Ed.), pp. 309-333, Elsevier, Amsterdam.
Alder-Nissen, J. 1986. Enzymatic hydrolysis of food proteins. Elsevier Applied Sci. Publ. London.
Aluko, R. E. and Monu, E., 2003. Functional and bioactive properties of quinoa seed protein hydrolysates. J. Food Sci. 68: 1254-1258.
Amarowwicz, R. and Shahidi, F., 1997. Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chem. 58(4): 355-359.
Amiza, M. A., Galani, D. and Owusu-Apenten, R. K. 1997. Cod (Gadus morhua) trypsin heat inactivation: a reaction kinetic study. J. Food Biochem. 21: 273-288.
Aroma, O. J. 1994. Nutrition and health aspects of free radicals and antioxidant. Food Chem. Toxic. 32: 671-683.
Baca, D., Rebeca, M. T., Pena-Vera, M. and Diaz-castaneda, 1991. Production of fish protein hydrolysates with bacterial proteases; yield and nutritional value. J. Food Sci. 56(2): 309-314.
Bezerra, R. S., Lins, E. J. F., Alencar, R. B., Paiva, P. M. G., Chaves, M. E. C., Coelho, L. C. B. B. and Carvalho Jr., L. B. 2005. Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochem. 40: 1829-1834.
Bogardus, S. L. and Gilbert, A. 2000. Carnosine inhibits vitro low-density lipoprotein oxidation. Nutr. Res. 20(7): 967-976.
Branen, A. C. 1975. Toxicology and biochemistry of BHA and BHT. JAOCS. 52: 59-63.
Brown, M. L. and Goldstein, J. L. 1983. Lipoprotein metabolism in the macrophage ; implications for cholesterol deposition in atherosclerosis. Ann. Rev. Biochem. 52: 223-261.
Cao, M. J., Osatomi, K., Suzuki, M., Hara, K., Tachibana, K. and Ishihara, T., 2000. Purification and characterization of two anionic trypsins from the heptopancreas of crap. Fish. Sci. 66: 1172-1179.
Chen, H. M., Muramoto, K., Yamauchi, F. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43(3):574-578.
Chen, H. M., Muramoto, K., Yamauchi, F. and Nokihara, K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44(9): 2619-2622.
Chen, H. M., Muramoto, K., Yamauchi, F., Ochi, H. and Nokihara, N. 1997. Characterization of antioxidative peptides from soybean. In Food Factors for Cancer Prevention, pp. 639-641. Eds. Ohigashi, H., Osawa, T., Terao, J., Watanabe, S., Yoshikawa, T., Springer-Verlag, Tokyo.
Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K. and Nokihara, K. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46(1): 49-53.
Chen, Y. H., Yang, Y. H., Liu, Y. H., Feng, H. H., Chang, C. T. and Chen, C. C. 2001. Studies on the angiotensin I-converting enzyme inhibitors (ACEI) from the enzymatic hydrolysates of chicken essence residues. Food Sci. Agric. Chem. Submitted.
Chiang, W. D., Tsou, M. J., Tsai, Z. Y. and Tasi, T. C. 2006. Angiotensin converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chem. 98(4): 725-732.
Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. I. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66: 1219-1227.
Cohen, T., Gerlter, A. and Birk, Y., 1981. Pancreatic proteolytic enzymes from crap (Cyprinus carpio)-I. Purification and physical properties of trypsin, chymotrypsin, elastase and carboxypeptidase B. Comp. Biochem. Physiol. 69B: 639-646.
Corvol, P., Ewilliams, T. A. and Soubrier, F. 1995. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymoyl. 248: 283-305.
Cruz, T. A., Thorpe, J. A. and Pullin, R. S. V., 1982. Enzyme electrophoresis in tilapia zillii : a pattern for determining biochemical genetic markers for use in tilapia stock identification. Aquaculture 29: 311-329.
Cushman, D. W. and H. S. Cheung. 1971. Sepectrophotometeric assay and properties of the angiotensin converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648.
Dalila, A., Sihem, M., Jean-Luc, S., Josiane, P., Malika, B. and Jacque, B. 2003. Dietary fish protein lowers blood pressure and alters tissue polyunsaturated fatty acid composition in spontaneously hypertensive rats. Nutrition. 19: 342-346.
Dinis, T. C. P., Madeira, V. M. C. and Almeida, L. M. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315, 161–169.
Diniz, E. M. and Martin, A. M. 1997. Effect of the extract of enzymatic hydrolysis on functional properties of shark protein hydrolysate. Lebensm. Wiss. Technol. 30: 266-272.
Dong, Y. L., Sheng, G. Y., Fu, J. M. and Wen, K. W. 2005. Chemical characterization and anti-anaemia activity of fish protein hydrolysate from Saurida elongate. J. Sci. Food Agri. 85: 2033-2039.
Duthie, G. G. 1993. Lipid peroxidation. Eur. J. Clin. Nutr. 47(2): 759-764.
Dziezak, J. D. 1986. Preservatives: antioxidant. Food Techol. 40: 94-102.
El-Beltagy, A. E., El-Adawy, T. A., Rahma, E. H. and El-Bedawey, A. A. 2004. Purification and characterization of an acidic protease from the viscera of bolti fish (Tilapia nilotica). Food Chem. 86: 33-39.
Fagan, J. M., Sleczke, B. G. and Sohar, I. 1999. Quantitation of oxidative damage to tissue proteins. IJBCB. 31: 751-757.
Fik, M. and Surowka, K. 2004. Autoproteolysis rate of rainbow trout muscle proteins. Nahrung/Food 48(2): 104-109.
Foote, C. S. 1976. Photosensitised oxidation and singlet oxygen: consequences in biological system, In “Free Radical in Biology”, Pryor, W. A., (Ed.), Vol. II, pp.85-133. New York.
Fox, P. F., Morrisey, P. A. and Mulvihill, D. M. 1982. Chemical and enzymatic modification of food proteins. In “Developments in Food proteins, 1,” B. J. Hudson(ed.,) p 1-60. Elsevier Appl. Sci., NJ, USA.
Castillo-Yanez, F. J., Pacheco-Aguilar, R., Garcia-Carreno, F. L. and Navarrete-Del Toro, M. A. 2004. Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem. 85: 343-350.
Frokjaer, S. 1994. Use of hydrolysates for protein supplementation. Food Technol. 10: 86-88.
Gabriela, V., Géraldine, C., Inés, B. A., Eduardo, S. and Bertrand, F. 2004. Age-dependent protein modifications and declining proteasome activity in the human lens. Arch. Biochem. Biophys. 427: 197-203.
GboGouri, G. A., Linder, M., Fanni, L. and Parmentier, M. 2004. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. 69(8): 615-622.
Gibbs, B. F., Zougman, A., Masse, R. and Mulligan, C. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res. Intl. 37: 123-131.
Giese, J. 1996. Tools for preventing lipid oxidation. Food Technol. 50(11): 73-81.
Gildberg, A. and Raa, J. 1977. Properties of propionic acid/formic acid preserved silage of cod viscera. J. Sci. Food Agric. 28: 647-653.
Gildberg, A., Hermes. J. E. and Orejana , F. M. 1984. Acceleration of autolysis during fish sauce fermentation by adding acid and reducing the salt content. J. Sci. Food Agric. 35: 1363-1369.
Gildberg, A. 1993. Enzymatic processing of marine raw materials. Process Biochem. 28: 1-15.
Gildberg, A., Simpson, B. K., and Haard, N. F. 2000. Uses of enzymes from marine organisms. In ‘‘Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality’’(Ed. Haard N. F. and Simpson B. K.), pp. 619-640, Marcel Dekker, Inc., New York.
Grimble, G. K., Ress, R. G., Keohane, P. P., Cartwright, T., Desreumaux, M. and Silk, D. B. 1987. Effect of peptide chain length on absorption of egg protein hydrolysates in the normal human jejunum. Gastroenterol. 92: 136-142.
Haard, N. F. and Simpson, B. K. 1994. Protease from aquatic organisms and their uses in the seafood industry. In Fisheries Processing, pp.132-154. Ed. A.M. Martin, Chapman & Hall, London.
Haard, N. F.,and Simpson, B. K. 2000. Seafood Enzymes: ‘‘Utlization and Influence on Postharvest Seafood Quality’’, Marcel Dekker, Inc., New York.
Haki, G. D. and Rakshit, S. K. 2003. Developments in industrially important thermostable enzymes: a review. Bioresource Technol. 89: 17-34.
Halliwell, B. 1994. Free readicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 344: 721-724.
Harman, D. 1956. Aging: a theory based on free radical and radiation
chemistry. J. Gerontol. 11: 298-300.
Hatate, H., Tanaka, R., Suzuki, N. and Hama, Y. 2000. Comparison of protease activity in liver among several species of squid and cuttlefish. Fish. Sci. 66: 182-183.
Hiromasa, Y., Akio, N., Noriko, N., Etsuo, N. and Hartmut, K. 1999. Oxidation of low density lipoprotein and plasma by 15-lipoxygenase and free radicals. Fed. Eur. Biochem. Soc. 445: 287-290.
Hjelmeland, K. and Raa, J. 1982. Characteristics of two trypsin type isozymes isolated from the Arctic fish capelin (Mallotus villosus). Comp. Biochem. Physiol. 71B: 557-562.
Hole, R. and Oines, S. 1991. Can fish silage be used as nutritional solution to reduce aquaculture waste when considering the slaughtering quality of fish. In “Nutritional Strategies and Aquaculture waste,” pp. 103-109. Eds. Cowey, C. B. and Cho, C. Y., Univ. of Guelph, Canada.
Hollt, V. 1983. Multiple endogenous opioid peptides. Trends Neurosci. 6: 24-26.
Hwang, P. P. 1987. Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Marine Biol. 94: 643-649.
Hwang, P. P., Sun, C. M. and Wu, S. M. 1989. Changes of plasma osmolality, chloride concentration and gill Na-K-ATPase activity in tilapia (Oreochromis mossambicus). Marine Biol. (in press).
Hwang, J. S., and Ko, W. C. 2004. Angiotensin I-converting enzyme inhibitory activity of protein hydrolysates from tuna broth. J. Food Drug Anal. 12(3): 232-237.
Ishikawa, Y. 1992. Development of new types of antioxidants from microbial origin. J. Jpn. Oil Chem. Soc. 41: 762-767.
Jao, C. L. and Ko, W. C. 2002. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fisheries Science 68: 430-435.
Jassim, S., Salt, W. G. and Stretton, R. J. 1988. The preparation and use of media based on simple fish waste extract. Lette. Appl. Microbiol. 6: 139-143.
Jaswel, A. S. 1990. Amino acid hydrolysate from crab processing waste. J. Food Sci. 55(2): 379-397.
Je, J. K., Kim, S. Y. and Kim, S. K. 2005. Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. Eur. Food Res. Technol. 221: 157-162.
Jeffrey, L. C. and Charles, S. C. 1996. Protein Engineering. Wiley-Liss.
Jeon, Y. J., Byun, H. G. and Kim, S. K. 1999. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem. 35: 471-478.
Jiang, S. T., Lee, J. J. and Chen, H. C. 1996. Proteolysis of actomyosin by cathepsin B,L,L-like,and X from mackerel (Scomber australasicus). J. Agric. Food Chem. 44(3): 769-773.
Jun, S. Y., Park, P. J. and Jung, W. K. 2004. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur. Food Res. Technol. 219: 20-26.
Jung, W. K., Mendis, E., Je, J. Y., Park, P. J., Son, B. W., Kim, H. C., Choi, Y. K. and Kim, S. K. 2006. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 94: 26-32.
Kim, S. K., Lee, H. C., Byun, H. G. and Joen Y. J. 1996. Isolation and characterization of antioxidative peptides from enzymatic hydrolysates of yellowfin sole skin gelatin. J. Korean Fish. Soc. 29(2): 246-255.
Kim, J.M., Whang, J. H. and Suh, H. J. 2004. Enhancement of angiotensin I-converting enzyme inhibitory activity and improvement of the emulsifying and foaming properties of corn gluten hydrolysate using ultrafiltration membranes. Eur. Food Res. Technol. 218: 133-138.
Kloczewiak, M., Timmons, S., Lukas, T. J. and Hawiger, J. 1984. Platelet receptor recognition sites on human fibrinogen: synthesis and structure function relation ship of peptides corresponding to the carboxyterminal segment of the γ-chain. Biochem. 23: 1767-1774.
Kohen, K. 1999. Skin antioxidants: their role in aging and in oxidative stress new approaches for their evaluation. Biomed. Pharmacother. 53: 181-192.
Kowltovsky, A. J. and Vercesi, A. E. 1999. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 26: 463-471.
Kuo, J. M., Yen, D. B. and Pan, B. S. 1999. Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 47: 3206-3209.
Lahl, W. J. and Braun, S. D. 1994. Emzymatic production of protein hydrolysates for food use. Food Technol. 48(10): 68-71.
Larson, R. A. 1988. The antioxidants of higher plant. Phytochem. 27: 969-978.
Lee, K. A. and Kim, S. H. 2005. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation. Food Chem. 90: 389-393.
Lopez, M. D. and Garcia-Garreno, F. L. 2000. Applications of fish and shellfish enzymes in food and feed products. In ‘‘Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality’’(Ed. Haard N. F. and Simpson B. K.), pp. 571-618, Marcel Dekker, Inc., New York.
Lowery, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
Mackie, I. M. 1982. Fish protein hydrolysates. Process Biochemistry. 31: 26-31.
Malamas, M. S., Carlson, R. P., Grimes, D., Howell, R., Claser, K., Gunawan, I., Nelson, J. A., Kanzelberger, M., Shah, U. and Hartman, D. A. 1996. Azole phenoxy hydroyureas as selective and orally active inhibitors of 5-lipoxygenase. J. Med. Chem. 39: 237-245.
Martinez, A. and Serra, J. L. 1989. Proteolytic activities in the digestive tract of anchovy (Engraulis encrasicholus). Int. J. Food Sci. Technol. 23: 185-194.
Maugle, P. D., Deshimaru, O., Katayama, T. and Simpson, K. L. 1982. Charactristics of amylase and protease of the shrimp Penaeus japonicus. Bull. Jap. Soc. Sci. Fish. 48: 1753- 1757.
Mayasich, S. A. and Smucker, R. A. 1986. Glycosidases in the American oyster, Crassostrea virginica Gmelin, digestive tract. J. Exp. Mar. Biol.Ecol. 95: 95-98.
McDonagh, D. and FitzGerald, R. J. 1998. Production of caseinophosphopeptides(CPPs) from sodium caseinate using arrange of commericial protease preparations. Intern. Dairy J. 8: 39-45.
Min, D. B., Lee, S. H. and Lee, E. C. 1988. Singlet oxygen oxidation of vegetable oils. In “Flavor Chemistry of Lipid Foods”, Min, D. B. and Smouse, T. H. (Ed.), pp: 57-97. American Oil Chemists`Society, Champaign, U. S. A.
Modlinger, P. S., Wilcox, C. S. and Aslam, S. 2004. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin. Nephrol. 24: 354-65.
Moore, S. and Stein, W. H. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211: 907-913.
Motoi, H. and Kodama, T. 2003. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolysate. Nahung/Food 47: 354-358.
Murakami, K. and Noda, M. 1981. Studies on proteinases from the digestive organs of sardine. 1. Purification and characterization of three alkaline proteinases from the pyloric caeca. Biochem. Biophy. Acta 658: 17-26.
Murase, H., Nagao, A. and Terao, J. 1993. Antioxidant and emulsifying activity of N-(Long-chain-acyl) histidine and N-(Long-chain-acyl) carnosine. J. Agric. Food Chem. 41: 1601-1604.
Namiki, M. 1990. Antioxidants/antiimutagens in foods. CRC Cr. Rev. Food Sci. 29: 273-300.
Neufeld, D. and Wright, S. 1996. Response of cell volume in mytilus gill to acute salinity change. J. Exp. Biol. 199: 473-484.
Norris, E. R. and Mathles, J. C. 1953. Preparation, properties and crystallization of tuna pepsin. J. Biol. Chem. 204(2): 673-678.
Obrosova, I. G., Fathallah, L. and Stevens, M. J. 2003. Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy. Exp. Neurol. 172: 211-219.
Okamoto, G., Hayase, F. and Kato, H. 1992. Scavenging of active oxygen species by glycated proteins. Biosci. Biotech. Biochem. 56: 928-931.
Orejana, F. M. and Liston, J., 1982. Agents of proteolysis and its inhibition in Patis (fish sauce) fermentation. J. Food Sci. 47: 198-203.
Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35: 771-775.
Pan, D., Luo, Y. and Tanokura, M. 2005. Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chem. 91: 123-129.
Pangkey, H., Hara, K., Tachibana, K., Cao, M. J., Osatomi, K. and Ishihara, T. 2000. Purification and characterization of cathepsin S from hepatopancreas of carp Cyprinus carpio. Fish. Sci. 66: 1130- 1137.
Parrado, J., Bautista, J. and Machado, A. 1991. Porduction of soluble enzymatic protein hydrolysate from industrially defatted nondehulled sunflower meal. J. Agric. Food Chem. 39: 447-450.
Pena-Ramos, E. A. and Xiong, Y. L. 2002. Antioxidative activity of soy protein hydrolysates in a liposomal system. J. Food Sci. 67: 2952-2956.
Pena-Ramos, E. A., Xiong, Y. L. and Arteaga, G. E. 2004. Fractionation and characterization for antioxidant activity of hydrolyzed whey protein. J. Sci. Food Agric. 84: 1908-1918.
Peterson, G. L. 1979. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal. Biochem. 100: 201-220.
Pokorny, J. 1991. Natural antioxidants for food use. Trends Food Sci. Technol. 2: 223-227.
Quaglia, G. B. and Orban, E. 1987. Enzymic solubilisation of sardine (Sardina pilchardus) by commercial protease. J. Sci. Food Agric. 38: 263-269.
Ramarathnam, N., Osawa, T., Ochi, H. and Kawakishi, S. 1995. The contribution of plant food antioxidants to human health. Trends in Food Sci. Technol. 6: 75-77.
Ranathunga, S., Rajapakse, N. and Kim, S. K. 2005. Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). Eur. Food Res. Technol. 222: 310-315.
Rebeca, B. D., Pena-Vera, M. T. and Diaz-castaneda, M. 1991. Production of fish protein hydrolysates with bacterial protease, yield and nutritional value. J. Food Sci. 56(2): 309-314.
Ren, H., Liu, H., Endo, H., Takagi, Y. and Hayashi, T. 2006. Anti-mutagenic and anti-oxidative activities found in Chinese traditional soybean fermented products furu. Food Chem. 95: 71-76.
Robak, J. and Gryglewski, R. J. 1988. Flavonoids are scavengers of superoxide anions. Bioch. Pharm. 37: 837-841.
Sakanaka, S. and Tachibana, Y. 2006. Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem. 95: 243-249.
Sanders, L. M., Henderson, C. E., Hong, M. Y., Barhoumi, R., Burghardt, R. C., Carroll, R. J., Turner, N. D., Chapkin, R. S. and Lupton, J. R. 2004. Pro-oxidant environment of the colon compared to the small intestine may contribute to grater cancer susceptibility. Cancer Lett. 208: 155-161.
Sen, D. P., Sripathy, N. V., Lahiry, N. L., Sreenivasan, A. and Subrahamanyan, V. 1962. Fish hydrolysates Ⅰ. Rate of hydrolysis of fish flesh with papain. Food Technol. 5: 138-141.
Sendobry, S. M., Cornicelli, J. A., Welch, K., Bocan, T., Tait, B., Trivedi, B. K., Colbry, N., Dyer, R. D., Feinmark, J. and Daugherty, A. 1997. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. British J. Pharmacology. 120: 1199-1206.
Shahidi, F., Han, X. Q. and Synowiecki, J. 1995. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 53: 285-293.
Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Siemensma, A. D., Weijer, W. J. and Bak, H. J. 1993. The importance of peptide lengths in hypoallergenic infant formulae. Trends Food Sci. Technol. 4: 16-21.
Slinkard, K. and Singleton, V. L. 1977. Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic. 28: 49-55.
Stadtman, E. R. 1992. Protein oxidation and aging. Science. 257: 1220-1224.
Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. and Witztum, J. L. 1989. Beyond cholesterol: modification of low density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320: 915-924.
Suetsuna, K. 2000. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Mar. Biotechnol. 2: 5-10.
Suetsuna, K. 2002. Identification of antihypertensive peptides from peptic digest of the short-necked clam Tapes Philippinarum and the pearl oyster Pinctada fucata martensii. Fisheries Science. 68: 233-235.
Sugiyama, K., Egawa, M., Onzuka, H. and Oba, K. 1991. Characteristics of sardine muscle hydrolysates prepared by various enzymic treatment. Bull. Jap. Soc. Sci. Fish. 57(3): 475-479.
Sunde, J., Eiane, S. A., Rustad, A., Jensen, H. B., Opstvedt, J., Nygard, E., Venturini, G. and Rungruangsak-Torrissen, K. 2004. Effect of fish feed processing conditions on digestive protease activity, free amino acid pools, feed conversion efficiency and growth in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition 10: 261-277.
Swaine, R. L. Jr. 1993. Hydrolyzed vegetables protein as a flavoring agent. Perf. Flav. 18(4): 35-38.
Tadatoshi, K., Shoichi, I., Yoko, M., Yasuko, U. M., Hideki, N., Yuji, N., Masahiko, T., Katsumi, T., Masatomo, W., Masashi, I., Hisao, M., Shigeo, T., Hiroyuki, K., Toshiro, H., Koichi, S. and Yauso, K. 2004. Mammalian D-aspartyl endopeptidase: a scavenger for noxious recemized proteins in aging. Biochem. Bioph. Res. Co. 314: 730-736.
Takeshi, N. and Takakiyo, Y. 2003. Preparation and functional properties of beverages made from sea algae. Food Chem. 81: 327-332.
Taniguchi, A. and Takano, K. 2001a. Purification and properties of carboxypeptidase from Tilapia intestine. Nippon Suisan Gakkaishi 67(6): 1096-1102.
Taniguchi, A., Takano, K. and Kamoi, I. 2001b. Purification and properties of lipase from Tilapia intestine. Nippon Suisan Gakkaishi 67(1): 78-84.
Taniguchi, A., Takano, K. and Kamoi, I. 2001c. Purification and properties of lipase from Tilapia Stomach. Nippon Suisan Gakkaishi 67(1): 96-101.
Taniguchi, A. and Takano, K. 2002a. Purification and properties of aminopeptidase from Tilapia intestine. Nippon Suisan Gakkaishi 68(3): 382-388.
Taniguchi, Y. A. and Takano, K. 2004. Purification and properties of β-galactosidase from Tilapia intestine: Digrstive enzyme of Tilapia-X. Fish. Sci. 70: 688-694.
Tatterson, I. N. and Windesor, M. L. 1974. Fish silage. J. Sci Food Agric. 25: 369-379.
Tatterson, I. N. 1982. Fish silage-preparation, properties and uses. Animal Feed Sci. Technol. 7: 153-159.
Thomas, M. 1995. The role of free radicals and antioxidants: how do we know that they are working?Crit. Rev. Food Sci. Nur. 35: 21-39.
Tsuda, T., Fujii, M., Watanabe, M., Nakakuki, H., Ohshima, K., Osawa, T. and Kawakishi, S. 1994. Antioxidative activity of red bean extract and its application to food. Nippon Sho. Kog. Gak. 41(7): 475-480.
Uchida, N., Tsukayama, K. and Nishide, E. 1984. Purification and some properties of trypsins from the pyloric caeca of chum salmon. Bull. Jap. Soc. Sci. Fish. 50: 129-138.
Wako, Y., Ishikawa, S. and Muramoto, K. 1996. Angiotensin I-converting enzyme inhibitors in autolysates of squid liver and mantle muscle. Biosci. Biotechnol. Biochem. 60: 1353-1355.
Wang, J. S., Zhao, M. M., Zhao, Q. Z. and Jiang, Y. M. 2006. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem. xxx: xxx-xxx.
Winfree, R. A. and Stickney, R. R., 1981. Effects of dietary protein and energy on growth , feed conversion efficiency and body composition of Tilapia aureus. J. Nutr. 111: 1001-1012.
Whysner, J., Wang, C. X., Zang, E., Iatropoulos, M. J. and Williams, G. M. 1994. Dose response of promotion by butylated hydroxyanisole in chemically initiated tumours of the rat forestomach. Food Chem. Toxic. 32(3): 215-222.
Wong, D. W. S. 1995. Food Enzymes: structure and mechanism. Chapman and Hall press. New York, USA.
Woo, R. A. and Poon, R. Y. 2004. Gene Mutations and Aneuploidy: The Instability that Causes Cancer. Cell Cycle 3.
Wroblewska, B., Karamac, M., Amarowicz, R., Szymkiewicz, A., Troszyriska, A. and Kubicka, E. 2004. Immunoreactive properties of peptide fractions of cow whey proteins after enzymatic hydrolysis. Intl. J. Food Sci. Technol. 39: 839-850.
Wu, S. Y. and Brewer, M. S. 1994. Soy protein isolate antioxidant effect of lipid peroxidation of ground beef and microsomal lipids. J. Food Sci. 59: 702-706&738.
Wu, H. C., Chen, H. M. and Shiau, C. Y. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Intl. 36: 949-957.
Yamada, A., Takano, K. and Kamoi, I. 1991a. Purification and properties of protease from tilapia intestine. Nippon Suisan Gakkaishi 57(8): 1551-1557.
Yamada, A., Takano, K. and Kamoi, I. 1991b. Purification and properties of Amylase from tilapia intestine. Nippon Suisan Gakkaishi 57(10): 1903-1909.
Yamada, A., Takano, K. and Kamoi, I. 1992. Purification and properties of α-Glucosidase from tilapia intestine. Nippon Suisan Gakkaishi 58(11): 2189-2195.
Yamada, A., Takano, K. and Kamoi, I. 1993. Purification and properties of protease from tilapia stomach. Nippon Suisan Gakkaishi 59(11): 1903-1908.
Yamada, A., Takano, K. and Kamoi, I. 1996. Purification and properties of Amylase from tilapia stomach. Nippon Suisan Gakkaishi 62(2): 269-274.
Yamaguchi, N., Yokoo, Y. and Fufimaki, M. 1975. Studies on antioxidative activities of amino compounds of fats and oils. Part II. Antioxidative activities of dipeptides and their synergistic effects on tocopherol. Nippon Shokuhin Kogyo Gakkaishi 22(9): 425-430.
Yamauchi, K., Tomita, M., Giehl, T. J. and Ellison, R. T. 1993. Antibacterial activity of lactoferrin and pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728.
Yamaguchi, T., Takamura, H., Matoba, T. and Terao, J. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem. 62: 1201-1204.
Yen, G. C. and Chen, H. Y. 1995. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agric. Food Chem. 43: 27-32.
Yoshinaka, R., Sato, M. and Ikeda, S. 1983a. Distribution of trypsin and chymotrypsin and their zymogens in digestive system of catfish. Bull. Jap. Soc. Sci. Fish. 47: 1615-1618.
Yoshinaka, R., Tanaka, H., Sato, M. and Ikeda, S. 1983b. Purification and some properties of elastase from the pancreas of catfish. Bull. Jap. Soc. Sci. Fish. 48: 573-579.
Yoshinaka, R., Sato, M., Morishita J., Itoh, Y., Hujita, M. and Ikeda, S. 1984. Purification and some properties of two carboxypeptidase B from the catfish pancreas. Bull. Jap. Soc. Sci. Fish. 50: 1717-1722.
Yoshinaka, R., Sato, M., Morishita, J., Itoh Y. and Ikeda, S. 1985. Purification and some properties of carboxypeptidase A from the catfish pancreas. Bull. Jap. Soc. Sci. Fish. 51: 107-111.
Yoshinaka, R., Sato, M., Itoko, M., Yamashita, M. and Ikeda, S. 1986. Purification and characterization of a collagenolytic serine protease from the catfish pancreas. J. Biochem. 99: 459-467.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 于有慧(2005)。胡溫體制下的石油外交與挑戰。中國大陸研究,48:3,29-31。
2. 吳耿東、李宏台(2002)。生質物發電利用技術現況與發展。台電工程月刊,651,77-78。
3. 李魁鵬、周勤凱(2003)。建築整合型太陽光電系統之建築節能與經濟效益。太陽能及新能源學刊,8:1,15。
4. 林忠育、李欣哲(2002)。全球地熱發電開發現況與展望。台電工程月刊,651,49~52。
5. 林海清(2005)。台灣海權的發展戰略-從海洋政策層面分析(下)。海軍學術月刊,39:1,網路版,http://www.mnd.gov.tw/publication/subject.aspx?TopicID=1134。
6. 施勵行、林琨翔(2003)。綠色供應鏈中企業的整合策略。永續產業發展雙月刊,12,16-17。
7. 洪正(2005)。中共石油政治與戰略管理。展望與探索,3:7,65-66。
8. 馬小康、唐敏(2005)。我國風力發電技術之評估與建議。工業污染防治,94,106-108。
9. 許志義(1999)。台灣電價制度之探討。經濟情勢暨評論季刊,5:1,網路版,http://www.moea.gov.tw/~ecobook/season/sag/sag22.htm。
10. 郭禮青(2002)。全球太陽光電開發現況及國內應用潛力。台電工程月刊,651,38-39。
11. 陳文樹(2004)。汽電共生的推廣應用。瓦斯季刊,68,52-53。
12. 陳立功(2000)。一九九九年全國科技動態調查-兼論國內研發經費。科學發展月刊,28:10,772-775。
13. 陳志恆、楊顯整(2005)。節能材料之開發與使用技術。工業污染防治,94,136-137。
14. 陳勁甫(2001)。我國建立淨評估機制應有的認知。國防雜誌,16:11,3-10。
15. 陳勁甫、邱榮守(2001)。美國淨評估的歷史發展與意涵。戰略與國際研究,3:2,102-124。