跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林嘉銳
研究生(外文):Chia-jui Lin
論文名稱:以電腦模擬麥芽寡糖苷海藻糖生成酶與麥芽寡糖之結合部位並探討基質結合部位胺基酸殘基突變後對其轉糖基活性之影響
論文名稱(外文):Computer simulation of binding site of maltooligosyltrehalose synthase with maltooligosaccharide and effects of mutations of residues located in substrate binding site on the transglycosyl activities
指導教授:方翠筠
指導教授(外文):TSUEI-YUN FANG
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:91
中文關鍵詞:海藻糖基質結合電腦模擬
外文關鍵詞:trehalosesubsite bindingcomputer simulation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
麥芽寡糖苷海藻糖生成酶 (MTSase) 能將麥芽寡糖還原端上的 α-1,4 糖苷鍵結轉變為 α-1,1 糖苷鍵結,以產生麥芽寡糖苷海藻糖。由於此酵素對於短鏈基質之活性較差,且有可能是由於對其結合力不足造成,所以本實驗利用電腦模擬 MTSase 與基質的結合方式,期望能找到與基質結合相關的胺基酸殘基。
綜合電腦模擬的結果發現, KX 、 DX 、 EX 、 DX 及 RX 等胺基酸殘基皆位於 subsite -2 到 -4 之間,可與麥芽五糖產生氫鍵,所以將 DX 、 DX 及 RX 於 Sulfolobus solfataricus ATCC 35092 中相對的胺基酸殘基 DX 、 DX 及 RX 突變成 Alanine ,以確認其與基質之氫鍵是否確實存在。
將突變成功之 DNA 片段,於大腸桿菌中表現蛋白質,經過熱處理、離子交換層析及膠體等純化步驟後,這些突變型酵素之比活性分別為 84.26 U/mg (wild-type) 、 1.10 U/mg (DXA) 、 1.21 U/mg (DXA) 及 1.19 U/mg (RXA) ,顯示這些突變確實造成酵素活性大幅下降。
在酵素動力學方面,原生型之 kcat 為 423.64 (s-1) , KM 為 5.68 (mM) , kcat/KM 為 74.53 (s-1 mM-1) ; DXA 之 kcat 為 30.19 (s-1) , KM 為 43.17 (mM) , kcat/KM 為 0.699 (s-1 mM-1) ; DXA 之 kcat 為 87.16 (s-1) , KM 為 122.21 (mM) , kcat/KM 為 0.713 (s-1 mM-1) ; RXA 之 kcat 為 13.41 (s-1) , KM 為 43.52 (mM) , kcat/KM 為 0.308 (s-1 mM-1) ,所以其 Δ(ΔG) 分別為 12.93 (kJ/mol) (D411A) 、 12.87 (kJ/mol) (D610A) 及 15.20 (kJ/mol) (R614A) ,表示其活性喪失可能是由於基質與酵素之間的氫鍵消失所造成,所以這也證明了電腦模擬結果的可信度,對於基質結合部位的模擬結果,具有相當高的參考價值。
The maltooligosyltrehalose synthase (MTSase) mainly catalyzes an intramolecular transglycosyl reaction to form maltooligosyltrehalose from maltooligosaccharides by converting the α-1,4-glucosidic linkage at the reducing end to an α-1,1-glucosidic linkage. In addition to transglycosylation reaction, MTSase also catalysis a hydrolysis reaction to release glucose. The hydrolysis activity of MTSase was higher when using maltotriose as substrate than maltooligosaccharides with a higher degree of polymerization (DP), and this phenomenon may relate to the low binding ability of MTSase to low DP substrates. In order to know the residues located in the substrate binding site, computer simulation was used.
The results of computer simulation showed that residues KX, DX, EX, DX and RX are located between subsite -2 and -4, and are hydrogen bonds between enzymes and maltopentaose. In order to confirm the proposed hydrogen bonds between MTSase and maltopentaose, mutants DXA, DXA, and RXA were constructed.
The mutant DNA vectors were obtained by PCR amplification. Then the wild-type and mutant DNA were transformed into E. coli Rosetta (DE3) to express wild-type and mutant MTSases, respectively. The specific activities of purified wild-type, mutant DXA, DXA, and RXA MTSases were 84.26 U/mg, 1.10 U/mg, 1.21 U/mg, and 1.19 U/mg, respectively.
The kcat / KM values of DXA, DXA, and RXA MTSases were lower than that of wild-type MTSase for 69.63 ~ 76.6 folds. This result suggest that the residues X, X and X were the important residues to the activity of MTSase. All mutant MTSases had large changes in Δ(ΔG), suggesting that there are hydrogen bonds between the substrate and residues X, X and X of wild-type MTSase.
目錄.......................................................I
圖目錄.....................................................V
表目錄....................................................VI
中文摘要....................................................1
英文摘要....................................................2
一、前言...................................................3
二、文獻整理...............................................5
1. 海藻糖...................................................5
1.1簡史...................................................5
1.2特性及功能.............................................5
1.3應用...................................................6
1.4 熱穩定酵素轉換法生產海藻糖............................7
2. 麥芽寡糖苷海藻糖生成酶之介紹............................7
2.1 起源及特性............................................8
2.2 反應機制..............................................9
2.2.1 轉糖基機制.........................................9
2.2.2 水解機制...........................................10
3. 麥芽寡糖苷海藻糖生成酶結構之探討.........................10
3.1 麥芽寡糖苷海藻糖生成酶之完整結構......................10
3.2 麥芽寡糖苷海藻糖生成酶活性作用部位結構探討............11
3.3 麥芽寡糖苷海藻糖生成酶和其他 α- 澱粉酶家族酵素結構上
之異同...........................................13
4. 酵素動力學...............................................13
4.1 酵素動力學理論之起源..................................13
4.2 Michaelis – Menten 方程式之意義........................14
5. 電腦自動分子對接 (Automated docking).....................14
5.1 簡介..................................................14
5.2 AutoDock 軟體.........................................15
5.3 AutoDock的應用........................................15
6. 分子動力學模擬 (Molecular Dynamic Simulation)............16
6.1 簡介..................................................16
6.2 NAMD 軟體............................................17
6.3 NAMD的應用..........................................17
三、實驗流程...............................................18
四、實驗材料...............................................19
1. 菌株與質體...............................................19
1.1 treY 基因來源菌株......................................19
1.2 表現 treY 基因之質體...................................19
1.3 保存質體之菌株........................................19
1.4 蛋白質表現系統之生產菌株...............................19
2. 抗生素...................................................20
3. 酵素.....................................................20
3.1聚合酶.................................................20
3.2限制酶.................................................20
4. DNA 標準品 (Marker) ....................................20
5. 蛋白質標準品 (Marker) ...................................20
6. 培養基...................................................21
7. 試液與化學藥品...........................................21
8. 儀器設備.................................................22
9. 電腦軟體.................................................24
五、實驗方法...............................................25
1. AutoDock操作流程........................................25
2. NAMD 操作流程...........................................25
3. 設計點突變 PCR 引子.....................................26
4. 質體 DNA 之製備.........................................27
4.1 DNA 濃度之測定......................................28
5. 點突變 PCR 反應.........................................28
5.1 點突變 PCR 的溶液組成................................28
5.2 點突變 PCR 反應條件..................................29
6. DpnI 剪切 dsDNA template pET-15b-∆H-treY................30
7. 勝任細胞 (competent cell) 的製備.........................30
7.1 超級勝任細胞 (ultra competent cell) (E. coli DH5α) .........30
7.2 電穿孔 (electroporation) 勝任細胞 (E. coli Rosetta DE3).32
8. 突變 DNA 之轉形 (transformation) ......................32
8.1 熱休克................................................33
8.2 電穿孔................................................34
9. 以 colony PCR 篩選轉形株...............................34
9.1 colony PCR 反應的溶液組成.............................35
9.2 colony PCR 反應條件...................................36
9.3 電泳膠片分析..........................................36
10. 序列分析..............................................36
11. 麥芽寡糖苷海藻生成酶的生產與純化......................36
11.1 大腸桿菌的培養與酵素之表現...........................36
11.2 細胞破碎.............................................37
11.3 熱處理...............................................37
11.4 透析.................................................37
11.5 離子交換層析.........................................37
11.6 膠體過濾層析.........................................38
12. 蛋白質膠電泳分.......................................38
12.1 試劑之製備...........................................38
12.2 膠體之製備...........................................40
12.3 膠電泳之操作方法.....................................41
12.4 膠片染色與脫色.......................................41
12.4.1 染劑之製備........................................41
12.4.2 脫色液之製備......................................42
13. 蛋白質的定量...........................................42
13.1製備 Dye-reagent stock solution.........................42
13.2 製備 4× Dye-reagent...................................43
13.3 製備 BSA 標準品.....................................43
14. 麥芽寡糖苷海藻糖生成酶之轉糖苷活性測定..................43
14.1活性定義..............................................44
14.2製備 DNS 試劑........................................44
15. 轉糖苷活性之酵素動力學分析..............................45
六、結果與討論..............................................46
1. 電腦模擬.................................................46
1.1 Automated Docking......................................46
1.2 Molecular Dynamic Simulation............................49
2. 突變基因.................................................51
2.1 突變位置之設計........................................51
2.2 引子設計及點突變 PCR.................................52
3. 酵素純化.................................................53
4. 酵素動力學...............................................53
5. 綜合酵素動力學與電腦模擬的結果...........................55
未來展望....................................................55
七、結論....................................................56
八、參考文獻................................................57
圖一、活性區與基質結合模式之假說。........................63
圖二、Autodock 模擬完成後之示意圖。........................64
圖三、Docking後之麥芽寡糖與酵素活性部位之結合情形。.......65
圖四、麥芽三糖於Docking結果中 mg3-1 與酵素活性部位之結合情形。....................................................66
圖五、麥芽三糖於Docking結果中 mg3-3 與酵素活性部位之結合情形。...................................................67
圖六、能量平衡模擬完成後之示意圖。.........................68
圖七、核苷酸定序之結果。...................................69
圖八、蛋白質含量分析之標準曲線。..........................70
圖九、 DNS 測量麥芽五糖濃度之標準曲線。...................71
圖十、原生型 MTSase 之 (A) 離子交換層析; (B) 膠體過濾層析。.72
圖十一、突變型 DXA MTSase 之 (A) 離子交換層析;
(B) 膠體過濾層析。.....................................73
圖十二、突變型 DXA MTSase 之 (A) 離子交換層析;
(B) 膠體過濾層析。.....................................74
圖十三、突變型 RXA MTSase 之 (A) 離子交換層析;
(B) 膠體過濾層析。.....................................75
圖十四、以 10% SDS-PAGE 分析經加熱、離子交換及膠體過濾層析。.76
圖十五、重組之原生型與突變型 MTSase 經 80℃ 熱處理 2 小時後
之殘留活性。.......................................77
表一、 Docking 後 MTSase 與麥芽五糖可能產生之氫鍵..........78
表二、麥芽三糖、四糖及五糖之 Docking energy 和 free energy
的比較.................................................79
表三、能量平衡後 MTSase 與麥芽五糖可能產生之氫鍵...........80
表四、點突變引子...........................................81
表五、表現於 E.coli Rosetta (DE3) 產生原生型與突變型 MTSase
純化後之酵素比活性....................................82
表六、原生型及突變之MTSase以麥芽五糖為基質之轉糖基動力學
參數...............................................83
黃幸光, 2003 ,嗜高溫海藻糖生成相關酵素之基因選殖以及麥芽糖苷海藻糖生成酶的生產與特性探討,國立臺灣海洋大學食品科學系碩士學位論文。基隆。
潘勁行, 2005 ,活性部位苯丙胺酸殘基突變後對於麥芽寡糖苷海藻糖生成酶之轉糖基與水解作用的影響,國立臺灣海洋大學食品科學系碩士學位論文。基隆。
鍾耀德, 2004 ,活性部位芳香族殘基對於麥芽寡糖苷海藻糖生成酶之轉糖基與水解作用的影響,國立臺灣海洋大學食品科學系碩士學位論文。基隆。
Asahina E., and Tanno K.S. 1964. A large amount of trehalose in a frost-resistant insect. Nature 204: 1222.
Birch G.G., Wolfrom M.L., and Tyson R.S. 1963. Advances in carbohydrate chemistry. Academic Press New York 18: 201-225.
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Canatella P.J., Karr J.F., Petros J.A., and Prausnitz M.R. 2001. Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophysical Journal 80: 755-764.
Cross R.A. 2004. The kinetic mechanism of kinesin. Trends in Biochemical Sciences 29: 301-309.
Crowe J.H., Crowe L.M., Carpenter J.F., Rudolph A.S., Wistrom C.A., Spargo B.J., and Anchordoguy T.J. 1988. Interactions of sugars with membranes. Biochimica et Biophysica Acta 947: 367-384.
Davis B.J. 1964. Disc Electrophoresis II: Methods and application to human serum protein. Annals of the New York Academy of Sciences 404-427.
Dower W.J., Miller J.F., and Ragsdale C.W. 1988. High efficiency transformation of E.coli by high votage electroporation. Nucleic Acids Research 16: 6127-6145.
Elbein A.D. 1974. The metabolism of α,α-trehalose. Advances in Carbohydrate Chemistry and Biochemistry 30: 227-256.
Eroglu A., Russo M.J., Bieganski R., Fowler A., Cheley S., Bayley H., and Toner M. 2000. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nature Biotechnology 18: 163-167.
Fang T.Y., Hung X.G., Shih T.Y., and Tseng W.C. 2004. Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Extremophiles 8: 335-343.
Fang T.Y., Tseng W.C., Chung Y.T., and Pan C.H. 2006. Mutations on Aromatic Residues of the Active Site To Alter Selectivity of the Sulfolobus solfataricus Maltooligosyltrehalose Synthase. Journal of Agricultural and Food Chemistry 54: 3585-3590.
Fersht A.R., Shi J.P., Knill-Jones J., Lowe D.M., Wilkinson A.J., Blow D.M., Brick P., Carter P., Waye M.M., and Winter G. 1985. Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314: 235-238.
Fukuse T., Hirata T., Nakamura T., Ueda M., Kawashima M., Hitomi S., and Wada H. 1999. Role of saccharides on lung preservation. Transplantation 68: 110-117.
Gadd G.M., Chalmers K., and Reed R.H. 1987. The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Letter 48: 249-254.
Gueguen Y., Rolland J.L., Schroeck S., Flament D., Defretin S., Saniez M.H., and Dietrich J. 2001. Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiol Letter 194: 201-206.
Harding T.S. 1923. History of trehalose: its discovery and methods of preparation. Sugar 25: 476-478.
Haile J.M., 1992. ”Molecular dynamics simulation: elementary method.” Wiley. New York.
Higashiyama T. 2002. Novel functions and applications of trehalose. Pure and Applied Chemistry 74: 1263-1269
Inoue H., Nojima H., and Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28.
Kato M., Takehara K., Kettoku M., Kobayashi K., and Shimizu T. 2000. subsite structure and catalytic mechanism of a new glycosyltrehalose-producing enzyme isolated from the hyperthermophilic archaeum, Sulfolobus solfataricus KM 1. Bioscience, Biotechnology and Biochemistry 64: 319-326.
Katsuya Y., Mezaki Y., Kubota M., and Matsuura Y. 1998. Three – dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. Journal of Molecular Biology 281: 885-897.
Kobayashi K. 1996. Gene cloning and expression of new trehalose producing enzymes from the hyperthermophilic archaeum Sulfolobus solfataricus KM 1. Bioscience, Biotechnology and Biochemistry 60: 1882-1885.
Kobayashi K., Komeda T., Miura Y., Kettoku M., and Kato M. 1997. Production of trehalose from starch by novel trehalose – producing enzyme from Sulfolobus solfataricus KM 1. Journal of Fermentation and Bioengineering 83: 296-298.
Kobayashi M., Kubota M., and Matsuura Y. 1999. Crystallization and improvement of crystal quality for X-ray diffraction of maltooligosyl trehalose synthase by reductive methylation of lysine residues. Acta Crystallographica D55: 931-933.
Kobayashi M., Kubota M., and Matsuura Y. 2003. Refined structure and functional implications of trehalose synthase from Sulfolobus acidocaldarius. Journal of Aapplied Glycoscience 50: 1-8.
Kubota M., Maruta K., Fukudo S., Kurimoto M., Tsujisaka Y., Kobayashi M., and Matsuura Y. 2001. Structure and function analysis of malto – oligosyltrehalose synthase. Journal of Applied Glycoscience 48: 153-161
Kuby S.A. 1990. A Study of Enzyme (Volume I): enzyme catalysis, kinetics and substrate binding. CRC Press
Kuriki T., and Imanaka T. 1999. The concept of α – amylase family:structural similarity and common catalytic mechanism. Journal of Bioscience and Bioengineering 87: 557-565.
Kurimoto M., Tabuchi A., Mandai T., Shibuya T., Chaen H., Fukuda S., Sugimoto T., and Tsujisaka Y. 1997. Synthesis of glycosyl- trehaloses by cyclomaltodextrin glucanotransferase through the transglycosylation reaction. Bioscience, Biotechnology, and Biochemistry 61: 1146-1149.
Maruta K. 1996. Cloning and sequencing of a cluster of gene encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochimica et Biophysica Acta 129: 177-181.
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., and Olson A.J. 1998. Automated Docking using a Lamarckian Genetic Algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19: 1639-1662.
Neuhoff V., Arold N., Tanbe D., and Ehrhsrdt W. 1988. Impeoved staining of proteins in polyacrylamide gels inclusing isoelectric focusing gel wits clear background at nanogram sensitivity using coomassie brilliant blue G-250. Electrophoresis 9: 255-262.
Nishizaki, Y., Yoshizane, C., Toshimori, Y., Arai, N., Akamatsu, S., Hanaya, T., Arai, S., Ikeda, M., and Kurimoto, M. 2000. Disaccharide – trehalose inhibits bone resorption in ovariectomized mice. Nutrition Research 20: 653-664.
Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K. 2005. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26: 1781-1802.
Ragno R., Mai A., Sbardella G., Artico M., Massa S., Musiu C.,Mura M., Marturana F., Cadeddu A., and Colla P.L. 2004. Computer-aided design, synthesis, and anti-HIV-1 Activity in Vitro of 2-Alkylamino -6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-ones as novel potent non-nucleoside reverse transcriptase inhibitors, also active against the Y181C variant. Journal of Medicinal Chemistry 47: 928-934
Richards, A.B., Krakowka, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P.M., Waalkens – Berendsen, D.H., Shigoyuki, A., and Kurimoto, M. 2002. Trehalose:a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology 40: 871-898.
Sharma S.C. 1997. A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiology Letters 152: 11-15
Spiess A.N., and Ivell R. 2002. A highly efficient method for long-chain cDNA synthesis using trehalose and betaine. Analytic Biochemistry 301:168-74.
William M. Rockey, Alain Laederach, and Peter J. Reilly. 2000. Automated Docking of α-1,4 and α-1,6 linked glucosyl trisaccharides and maltopentaose into the soybean β-amylase active site. Proteins 40: 299-309.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top