跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹哲聖
研究生(外文):Che-Sheng Tsao
論文名稱:晶片上溫度控制以及流體阻力量測之研究
論文名稱(外文):Thermal Control and Fluid Resistance Measurement on Microfluid Chips
指導教授:陳柏台
指導教授(外文):Pei-Tai Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:124
中文關鍵詞:流容流阻實驗室晶片軟微影紅外線檢溫法
外文關鍵詞:fluidic capacitancefluidic resistancelab-on-a-chipsoft lithographyPDMS(polydimethylsiloxane)Sephacryl S-100 HRIR thermometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們使用壓力感測器量測液體注入微流體晶片中所產生的壓力變化,在此種實驗架構中,部分的流體會進入壓力感測器的連接管路內而壓縮空氣,造成流容(fluidic capacitance)效應。這種流容所產生的暫態響應會使得壓力到達平衡的上升時間增加,我們推導此種流阻(fluidic resistance)與流容並聯架構中壓縮體積的解析解,由解得的壓縮體積可推得壓力差以及估計壓力差到達平衡的上升時間。這種方法應用於量測與流阻有關的壓力變化之時間響應,包括流體流過微流道中的薄膜及粉末所產生的阻力。而晶片的製作主要是透過軟微影(soft lithography)製程技術,先製作流道母模,再使用PDMS澆鑄翻模製作出微流道。
在壓力的量測上,由平衡後量得的壓力差與設定的流率可推算出微流體晶片中的流阻,晶片中大部分的流阻由尼龍薄膜所造成,而當微流道內充滿Sephacryl S-100 HR粉末時,大部分的流阻由Sephacryl S-100 HR所造成。對於較大的流率,上升時間會降低;對於較大的流阻,上升時間會增加,實驗的結果與數值預估有相當高的一致性。
本研究的第二部分探討晶片上的加熱反應器其溫度變化之時間反應以及晶片上溫度分佈之相互關係,溫度在晶片上的動態反應行為是由熱在晶片上的熱傳導、熱由晶片以熱對流散至空氣中,以及熱儲存在晶片等三個因素所描述。本文首先由熱傳導微分方程式出發,得到溫度對時間變化的時間常數、在晶片上溫度衰減的距離之特徵長度,以及熱對流係數、熱傳導係數、晶片厚度等參數在晶片熱反應的關係式。本文並以玻璃片為基材,在其上製作50µm與100µm的加熱器及溫度感應的電阻,建立溫度控制迴路,量測晶片的溫度動態反應時間常數,以及使用紅外線檢溫法 (IR thermometry)量測溫度在晶片上的分佈情形及特徵距離,最後再與數值模擬做比較。
In this thesis, we used a pressure sensor to measure the pressure during the liquid flowing into the microfluidic chip through the syringe pump. In this configuration, parts of the liquid flowed into a tube connected with the pressure sensor, consequently, compressing the air in this tube. The fluidic capacitance effect was generated in this tube. The transient response induced by the fluidic capacitance increased the rising time of the pressure. We derived the analytical solution of the compressed volume, the pressure related to the compressed volume and the rising time. This method was applied to measure the fluidic response and it’s pressure, associated fluidic resistance, including fluid flowing through membrane and powders in microchannels. These microfluidic chips were manufactured by soft lithography technology to make master mold. The chips were then cast from mold. On the measurement, the fluidic resistance could be compute by the steady-state response of the pressure measured and pumping rate of the syringe pump adjusted. We found that the huge resistance on this microfluidic chip was from the nylon membrane, however, the maximum resistance was from the Sephacryl S-100 HR powders filled up the microchannel. We concluded that the rising time was low when we used the high pumping rate, and the rising time was high when the fluidic resistance was high.
Another work regarding thermal analysis on glass chips, we discussed the relationship between the time response and the distribution of the temperature generated by heaters on chips. Heat flowing on the chip could be described by the thermal conduction, the thermal convection, and the heat capacity. First, we considered the heat equation and obtained a solution related to the time constant of the temporal temperature variations and the characteristic length of the temperature decayed on the chips. We fabricated some resistances for heaters and sensors on the glass substrates and constructed a control loop. We measured the time constant of the thermodynamics on the chip, then measured the distribution and the characteristic length through the IR thermometry. Finally, the experiment results were compared with numerical models.
中文摘要..........i
英文摘要.........ii
目錄..............v
表目錄..........vii
圖目錄.........viii
符號說明.........xi
第一章 緒論.........................................1
1-1前言.............................................1
1-2文獻回顧.........................................2
1-3研究目標........................................15
第二章 理論基礎....................................16
2-1微流體晶片壓力量測之理論建立....................17
2-1-1流阻計算......................................17
2-1-2流阻與流容並聯架構............................19
2-1-3壓縮體積的解析解及上升時間....................22
2-1-4數值實例......................................22
2-2晶片加熱機制之理論建立..........................26
2-2-1熱電阻效應....................................26
2-2-2薄膜熱電阻....................................27
2-2-3晶片上的熱傳導第三章 晶片設計與製程規劃.......33
3-1微流體晶片系統設計及製作........................33
3-1-1晶片架構設計..................................33
3-1-2晶片製程規劃..................................35
3-2晶片上加熱器設計................................42
3-2-1光罩設計......................................42
3-2-2金屬薄膜製程..................................44
第四章 實驗結果....................................49
4-1微流體晶片壓力量測..............................49
4-1-1壓力量測實驗架構..............................49
4-1-2流道注入DI water的壓力量測....................52
4-2晶片加熱實驗....................................62
4-2-1硬體架構建立..................................62
4-2-2溫控程式設計..................................65
4-2-3溫度係數校正..................................69
4-2-4功率與溫度之關係..............................72
4-2-5 PI參數調整對溫度上升之影響...................78
4-2-6溫度下降之時間常數量測........................84
4-2-7晶片上溫度分佈及特徵距離量測..................86
第五章 結論與未來展望..............................94
5-1結論............................................94
5-2未來展望........................................95
參考文獻...........................................96
附錄A.............................................103
附錄B.............................................109
附錄C.............................................117
國外期刊
[1]Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci., Vol. 28, pp. 153-184, 1998.
[2]M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, “An Integrated Nanoliter DNA Analysis Device,” Science, Vol. 282 , pp. 484-487, 1998.
[3]T. Pfohl, F. Mugele, R. Seemann and S. Herminghaus,” Trends in Microfluidics with Complex Fluids,” Chemphyschem, pp. 1291-1298, 2003.
[4]C. H. Mastrangelo, M. A. Burns and D. T. Burke,” Microfabricated Devices for Genetic Diagnostics,” Invited to Proceedings of the IEEE, pp. 1-15, 1998.
[5]J. Voldman, M. L. Gray and M. A. Schmidt,” Microfabrication in Biology and Medicine,” Annu. Rev. Biomed. Eng., pp. 401-425, 1999.
[6]V. Hessel, H. Lowe and F. Schonfeld,” Micromixers-a review on passive and active mixing principles,” Chemical Engineering Science, Vol. 60, pp. 2479-2501, 2005.
[7]D. J. Beebe, G. A. Mensing and G. M. Walker,” Physics and Applications of Microfluidics in Biology,” Annu. Rev. Biomed. Eng., pp. 261-286, 2002.
[8]J. H. Kang and J. K. Park,” Development of a microplate reader compatible microfluidic device for enzyme assay,” Sensors and Actuators B, Vol. 107 , pp. 980-985, 2005.
[9]Q. Yu, J. M. Bauer, J. S. Moore and D. J. Beebe,” Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett., Vol. 78, No. 17, pp. 2589-2591, 2001.
[10]C. H. Hsu and A. Folch,” Microfluidic devices with tunable microtopographies,” Appl. Phys. Litt., Vol. 86, pp. 1-3, 2005.
[11]V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson and S. R. Quake,” Scaling properties of a low-actuation pressure microfluidic valve,” J. Appl. Phys., Vol. 95, No. 1, pp. 393-398, 2004.
[12]M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake,” Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, Vol. 288, pp. 113-116, 2000.
[13]S. R. Quake and A. Scherer,” From Micro- to Nanofabrication with Soft Materials,” Science, Vol. 290, pp. 1536-1540, 2000.
[14]A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold and S. R. Quake,” An Integrated Microfabricated Cell Sorter,” Anal. Chem.,Vol. 74, pp. 2451-2457, 2002.
[15]J. C. Galas, V. Studer and Y. Chen,” Characterization of pneumatically activated Microvalves by measuring electrical conductance,” Microelectronic Engineering, pp. 112-117, 2005.
[16]A. M. Christensen, D. A. Chang-Yen and B. K. Gale,” Characterization of interconnects used in PDMS microfluidic systems,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 928-934, 2005.
[17]S. BoÈhm, W. Olthuis and P. Bergveld,” An Integrated Micromachined Electrochemical Pump and Dosing System,” Journal of Biomedical Microdevices 1:2, pp. 121-130, 1999.
[18]J. Collins and A. P. Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab on a Chip, Vol. 4 , pp. 7-10, 2004.
[19]T. Koerner, L. Brown, R. Xie and R. D. Oleschuk,” Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels,” Sensors and Actuators B, Vol. 107, pp. 632-639, 2005.
[20]S. Shibuichi, T. Onda, N. Satoh and K. Tsujii,” Super Water-Repellent Surfaces Resulting from Fractal Structure,” J. Phys. Chem., Vol. 100, pp. 19512-19517, 1996.
[21]K. Hosokawa, T. Fujii and I. Endo,” Formation and Active Mixing of Metered Nano/Picoliter Liquid Droplets in a Microfluidic Devices,” 4th International Symposium on Micro Total Analysis Systems (μTAS), 2000.
[22]B. Bohl, R. Steger, R. Zengerle and P. Koltay, “Multi-layer SU-8 lift-off technology for microfluidic devices,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 1125-1130, 2005.
[23]J. H. Daniel, S. Iqbal, R. B. Millington, D. F. Moore, C. R. Lowe, D. L. Leslie, M. A. Lee and M. J. Pearce, ”Silicon microchambers for DNA amplification,” Sensors and Actuators A, Vol. 71, pp. 81-88, 1998.
[24]C. G. J. Schabmueller, J. R. Pollard, A. G. R. Evans, J. Wilkinson, G. Ensell and A. Brunnschweiler, ”Integrated diode detector and optical fibres for in situ detection within micromachined polymerase chain reaction chips,” J. Micromech. Microeng, Vol. 11, pp.1-5, 2001.
[25]M. T. Taylor, P. Nguyen, J. Ching and K. E. Petersen, “Simulation of microfluidic pumping in a genomic DNA blood-processing cassette,” J. Micromech. Microeng., Vol. 13, pp.201-208, 2003.
[26]Y. Liu, C. B. Rauch, R. L. Stevens, R. Lenigk, J. Yang, D. B. Rhine and P. Grodzinski, “DNA amplification and hybridization assays in integrated plastic monolithic devices,” Anal. Chem., Vol. 74, pp. 3063-3070, 2002.
[27]E. T. Lagally, C. A. Emrich and R. A. Mathies, “Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis Lab on a Chip,” Vol. 1, pp.102-107, 2001.
[28]I. Rodriguez, M. Lesaicherre, Y. Tie, Q. Zou, C. Yu, J. Singh, L. T. Meng, S. Uppili, S. F. Y. Li, P. Gopalakrishnakone and Z. E. Selvanayagam, “Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis,” Electrophoresis, Vol. 24, pp.172-178, 2003.
[29]T. M. H. Lee, M. C. Carles and I. M. Hsing, “Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection,” Lab on a Chip (Advance Article), Vol. 3, pp. 100-105, 2003.
[30]J. Yang, Y. Liu, C. B. Rauch, R. L. Stevens, R. H. Liu, R. Lenigk and P. Grodzinski, ”High sensitivity PCR assay in plastic micro reactors,” Lab on a Chip, Vol. 2, pp. 179-187, 2002.
[31]Y. C. Lin, M. Y. Huang, K. C. Young, T. T. Chang and C. Y. Wu, “A rapid micro-polymerase chain reaction system for hepatitis C virus amplification,” Sensors and Actuators B, Vol. 71, pp. 2-8, 2000.
[32]Y. C. Lin, C. C. Yang and M. Y. Huang, “Simulation and experimental validation of micro polymerase chain reaction chips,” Sensors and Actuators B, Vol. 71, pp. 127-133, 2000.
[33]Q. Zou, Y. Miao, Y. Chen, U. Sridhar, C. S. Chong, T. Chai, Y. Tie, C. H. L. Teh, T. M. Lim and C. Heng, ”Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing,” Sensors and Actuators A, Vol. 102, pp. 114-121, 2002.
[34]D. S. Yoon, Y. S. Lee, Y. Lee, H. J. Cho, S. W. Sung, K. W. Oh, J. Cha and G. Lim, ”Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip,” J. Micromech. Microeng, Vol. 12, pp. 813-823, 2002.
[35]J. El-Ali, I.R. Perch-Nielsen, C.R. Poulsen, D.D. Bang, P. Telleman and A. Wolff, “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor,” Sensors and Actuators A, Vol. 110, pp. 3-10, 2004.
[36]Y. S. Shin, K. Cho, S. H. Lim, S. Chung, S. J. Park, C. Chung, D. C. Han and J. K. Chang, “PDMS-based micro PCR chip with Parylene coating,” J. Micromech. Microeng., Vol. 13, pp. 768-774, 2003.
[37]M. U. Kopp, A. J. de Mello and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science, Vol. 280, pp. 1046-1048, 1998.
[38]P. J. Obeid, T. K. Christopoulos, H. J. Crabtree and C. J. Backhouse, ”Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection,” Anal. Chem., Vol. 75, pp. 288-295, 2003.
[39]I. Schneegaß, R. Brautigam and H. M. Kohler, “Miniaturized flow-through PCR with different template types in a silicon thermocycler,” Lab on a Chip Vol. 1, pp.42-49, 2001.
[40]Q. Zhang, W. Wang, H. Zhang and Y. Wang, “Temperature analysis of continuous-flow micro-PCR based on FEA,” Sensors and Actuators B, Vol. 82, pp. 75-81, 2002.
[41]K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo and H. Misawa, “A heater-integrated transparent microchannel chip for continuous-flow PCR,” Sensors and Actuators B, Vol. 84, pp. 283-289, 2002.
[42]J. P. Holman, Heat transfer, appendix A.
[43]J. Khandurina, T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote and J. M. Ramsey, “Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices,” Anal. Chem., Vol. 72.

國內論文
[44]黃俊偉,「應用PDMS技術製作電阻加熱型微流體系統製程分析」,國立台灣海洋大學,碩士學位論文,民國九十二年。
[45]簡麒佑,「微流體晶片溫度控制製程與分析」,國立台灣海洋大學,碩士學位論文,民國九十二年。
[46]林展生,「微流體多工取樣系統於分子模版感測晶片之應用」,國立成功大學,碩士學位論文,民國九十三年。
[47]裘常新,「新式微蠕動幫浦之設計製作及操控」,國立台灣海洋大學,碩士學位論文,民國九十五年。

書目
[48]Gregory T.A. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, 1998.
[49]Gel Filtration: Principles and Methods, 5th edition, Pharmacia.
[50]Michael Quirk、Julian Serda 著,半導體製造技術,羅文雄等 譯,滄海書局,台北,民國九十二年。
[51]Hong Xiao 著,半導體製程技術導論,羅正忠等 譯,台灣培生教育,台北,民國九十一年。
[52]莊達人,VLSI製造技術,高立圖書,台北,民國九十年。
[53]Benjanin C. Kuo 著,自動控制系統,黃漢邦 譯,東華書局,台北,民國九十二年。
[54]Norman S. Nise 著,控制系統工程,黃淳德 譯,滄海書局,台北,民國九十一年。
[55]林穀欽,LabVIEW基礎程式設計及應用,二版,全華科技圖書出版,台北,民國九十三年。

網址
[56]http://www.ni.com.tw。
[57]http://nems.ntu.edu.tw/。
[58]http://www.microchem.com/。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top