跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡勝耀
研究生(外文):Sheng-Yao Hu
論文名稱:雜質對過渡金屬二硒單晶之非等向電傳導及光學特性影響之研究
論文名稱(外文):The effects of dopants on the electrical transport and optical anisotropy of transition metal diselenide single crystals
指導教授:程光蛟
指導教授(外文):Kwong-Kau Tiong
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:165
中文關鍵詞:雜質過渡金屬非等向電傳導光學
外文關鍵詞:DopantTransition metalAnisotropicElectrical transportOptical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是探討摻雜物對過渡性金屬第六族(鉬及鎢)和第七族(錸)的二硒單晶的非等向電學傳導與光學特性的影響程度。這項主題被探討的原因是由於此類材料有極佳的非等向電學,光學和力學特性。再加上此類材料的能帶正好匹配太陽光譜能帶,所以他們可以被應用在光電化學太陽能電池的電極材料。多方面的嘗試是在研究使用不同的摻雜物對這些非等向材料的影響效應。研究發現少量的摻雜物可以促進晶體成長進而產生大尺寸的材料。從這些大尺寸材料所提供的凡得瓦面和側面操作面積可以提昇非等向電學傳導和光學特性的研究。
在本項研究中所使用的晶體,主要以溴做為傳導劑,利用化學氣相傳導法來成長二硒化鉬摻雜鈮,二硒化鉬摻雜錸,二硒化鎢摻雜錸及二硒化錸摻雜鉬。X-ray繞射量測是用來確定所成長的晶體結構。光電壓是用來探討非等向晶體的光學特性,另外利用偏極化壓電及電解液電場調制光譜量測來研究摻雜物對於內部能帶直接躍遷的影響程度。霍爾及電阻率量測是用來探討非等向電學傳導特性。摻雜物對於無摻雜與有摻雜材料的非等向電學傳導與光學特性的影響程度將會有作一深入個比較和討論。
The purpose of this work is to characterize the effects of dopants on the electrical transport and optical anisotropy of transition metal diselenide single crystals in the groups VIB (Mo and W) and VIIB (Re). It is a subject of considerable interest because of their extremely anisotropic electrical, optical and mechanical properties. Since the band gaps of these materials are well matched to the solar spectrum, they can be used as an efficient photoconductive layer in photovoltaic devices and photoelectrochemical solar cells. Various efforts in studying the influence of their anisotropic properties of these materials have been produced with controllable different dopants. It appears that the addition of a small amount of dopants promotes the growth of material with extended crystal dimension. The larger surface areas of the van der Waals and edge planes facilitate sufficient working surfaces for the study of the electrical transport and optical anisotropy of the crystals.
In this work, single crystals of Nb-doped MoSe2, Re-doped MoSe2, Re-doped WSe2, W-doped ReSe2 and Mo-doped ReSe2 are grown using the chemical vapor transport method with Br2 as the transporting agent. XRD pattern is used to confirm the crystal structure of the as-grown material. The electrical transport anisotropy is being probed by conductivity and Hall measurements. Optical anisotropic properties have been studied with the aid of polarized photovoltage, electrolyte electroreflectance and piezoreflectance measurements for the effect of dopants on the interband transition energies of various features. The effect of dopants on the electrical transport and optical anisotropy of undoped and doped materials will be compared and discussed.
Abstract i
Acknowledgments iii
Table of contents iv
List of figures vi
List of tables xi
1 INTRODUCTION 1
1.1 Transition metal dichalcogenides 1
1.1.1 Crystal structure 1
1.1.2 Electronic structure 9
1.1.3 Synthesis 13
1.1.4 Electrical transport properties 14
1.1.5 Optical properties 15
1.2 The intercalation reaction and dopant effects 16
1.2.1 Intercalation definition 16
1.2.2 Dopant effects 17
1.3 Survey of recent literatures 19
1.3.1 The physical properties 20
1.3.2 The chemical properties 21
1.4 Statement of the present work 21
2 SINGLE CRYSTAL GROWTH AND STRUCTURAL INVESTIGATIONS 24
2.1 Single crystal growth 24
2.1.1 Compounds preparation 24
2.1.2 Crystal growth 25
2.2 Structural investigations of single crystals 27
2.2.1 Introduction to powder X-ray diffraction 28
2.2.2 Two-layered hexagonal crystal structure 30
2.2.3 Triclinic crystal structure 36
2.3 Energy dispersive analysis by X-ray 40
3 EXPERIMENTAL DETAILS 42
3.1 Conductivity and Hall effect measurements 42
3.1.1 Computer-controlled system for electrical characterization 43
3.1.2 Sample preparations in polarization electrical measurements 43
3.1.3 Definitions for conductivity and Hall calculations 49
3.2 Photovoltage measurements 51
3.2.1 Computer-controlled system for photovoltage measurements 52
3.2.2 Sample preparations in polarization photovoltage measurements 52
3.2.3 Definitions for band gap determinations 56
3.3 Modulation techniques 56
3.3.1 Computer-controlled system for modulation spectroscopy 59
3.3.2 Sample preparations in polarization piezoreflectance 59
3.3.3 Sample preparations in polarization electrolyte electroreflectance 61
3.3.4 Lineshape considerations for PzR and EER experiments 62
4 ELECTRICAL TRANSPORT ANISOTROPY STUDY OF DOPANT EFFECT 67
4.1 Electrical anisotropy of doped and undoped MoSe2 single crystals 67
4.2 Electrical anisotropy of doped and undoped WSe2 single crystals 72
4.3 Electrical anisotropy of doped and undoped ReSe2 single crystals 75
5 ROOM TEMPERATURE OPTICAL ANISOTROPY STUDY OF DOPANT EFFECT 80
5.1 Optical anisotropy of doped and undoped MoSe2 single crystals 80
5.2 Optical anisotropy of doped and undoped WSe2 single crystals 91
5.3 Optical anisotropy of doped and undoped ReSe2 single crystals 99
6 TEMPERATURE DEPENDENCE PIEZOREFLECTANCE STUDY OF DOPANT EFFECT 106
6.1 Excitons study of doped and undoped MoSe2 / WSe2 single crystals 106
6.2 Excitons study of doped and undoped ReSe2 single crystals 123
7 CONCLUSION 133
REFERENCES 137
PUBLICATIONS 147

LIST OF FIGURES

Fig. 1.1 Typical structure of layered TMDCs. Bonding is strong within each (triple-) layer, but much weaker across the separating “van der Waals gap”. The unit cell is defined with the c-axis perpendicular to the layers, and the a- and b-axes along the minimal chalcogen-chalcogen distance. 2
Fig. 1.2 Two possible types of MX2 layered TMDCs coordinations from ref. [3]: (a) Trigonal-prismatic coordination (space group ) and (b) Octahedral coordination (space group ). 4
Fig. 1.3 (a) Some common TMDCs polytypes represented by the projections on the (b) The crystal lattice of the 2Hb polytype of MX2 belongs to the non-symmorphic hexagonal space group ( ). 6
Fig. 1.4 (a) The representative scheme of the basal plane of ReSe2 with the chains of Re4 “diamond clusters” are shown. (b) The distorted unit cell (drawn by thick lines) which is derived from the perfect hexagonal lattice. 8
Fig. 1.5 Schematic diagrams of the density of states for TMDCs of groups IVB-VB-VIB after the Wilson and Yoffe model. From ref. [1] (a) ZrS2, octahedral (b) NbS2 and MoS2 trigonal-prismatic. 10
Fig. 1.6 Brillouin zone (BZ) for the hexagonal crystal structure. In the top of the BZ (A-L-H) there is generally a double degeneracy of each band. The interaction across the VdW plane is evident from the lift of degeneracy when going from A to Γ. 12
Fig. 2.1 (a) Temperature profile for the synthesis of ReSe2 polycrystalline compound. (b) Temperature profile for the growing ReSe2 single crystal. 26
Fig. 2.2 (a) The atoms, represented as full circles in the graph, can be viewed as forming different sets of lattice planes in the crystal. (b) Bragg’s reflection in a given set of lattice plane with an interplane distance of dhkl. 29
Fig. 2.3 Powder diffraction data can be collected using either (a) transmission or (b) reflection geometry. 31
Fig. 2.4 The surface photograph of as-grown (a) Nb-doped MoSe2, (b) Re-doped MoSe2 and (c) Re-doped WSe2 samples. 34
Fig. 2.5 The XRD patterns of as-grown (a) Nb-doped MoSe2, (b) Re-doped MoSe2 and (c) Re-doped WSe2 samples. 35
Fig. 2.6 The surface photograph of as-grown (a) W-doped ReSe2 and (b) Mo-doped ReSe2 samples. 37
Fig. 2.7 The XRD patterns of as-grown (a) W-doped ReSe2 and (b) Mo-doped ReSe2 samples. 38
Fig. 3.1 (a) A computer-controlled system for the temperature-dependent conductivity and Hall measurements. (b) The sample geometry and contacts placement used here in our measurements. 44
Fig. 3.2 Conductivity measurement of (a) I�姞 or I���駥 polarization configuration (b) I�姡, I���駬 and I���駥 polarization configuration. 46
Fig. 3.3 Hall measurements of (a) (I�姞, B���駥 ) polarization configuration (b) (I���駥, B�姞) polarization configuration (c) (I�姡, I���駬; B���駥) polarization configuration. 48
Fig. 3.4 (a) A computer-controlled system with PCI-8255 and IEEE-488 techniques for PV measurement (b) An electrochemical cell constructed from Teflon with a quartz window was designed to fit the sample. 53
Fig. 3.5 PV measurement of (a) (E�姞, E���駥; k�姞) and (E�姞, k���駥) polarization configurations (b) (E�姡, k���駥) and (E���駬, k�姞) polarization configurations. 55
Fig. 3.6 Computer-controlled setup with low temperature system used in modulation spectroscopy and modulation source for EER or PzR experiment. 58
Fig. 3.7 Sample preparations and arrangements for (a) PzR experiments with modulation source of AC sine-wave and (b) EER experiments with modulation source of 0.35 Vpp square-wave. 60
Fig. 4.1 (a) Temperature-dependent conductivity of Nb-doped, Re-doped and undoped MoSe2 parallel and perpendicular to the crystal c-axis. (b) Temperature-dependent mobilities of Nb-doped, Re-doped and undoped MoSe2 perpendicular to the crystal c-axis. 69
Fig. 4.2 (a) Temperature-dependent conductivity of Re-doped and undoped WSe2 parallel and perpendicular to the crystal c-axis. (b) Temperature-dependent mobilities of Re-doped WSe2 perpendicular to the crystal c-axis. 73
Fig. 4.3 (a) Temperature-dependent conductivity of W-doped and undoped ReSe2 parallel and perpendicular to the crystal b-axis. (b) Temperature-dependent mobilities of W-doped ReSe2 and undoped ReSe2 parallel and perpendicular to the crystal b-axis. 77
Fig. 4.4 (a) Temperature-dependent conductivity of Mo-doped and undoped ReSe2 parallel and perpendicular to the crystal b-axis. (b) Temperature-dependent mobilities of Mo-doped and undoped ReSe2 parallel and perpendicular to the crystal b-axis. 78
Fig. 5.1 (a) Relative photovoltage spectra for Nb-doped and undoped MoSe2 single crystals at 300 K. (b) Square root of the relative photovoltage intensity for Nb-doped and undoped MoSe2 single crystals for the determination of the indirect band gap. 85
Fig. 5.2 (a) Relative photovoltage spectra for Re-doped and undoped MoSe2 single crystals at 300 K. (b) Square root of the relative photovoltage intensity for Re-doped and undoped MoSe2 single crystals for the determination of the indirect band gap. 86
Fig. 5.3 (a) The EER spectra of Nb-doped and undoped MoSe2 single crystals over the energy range of 1.35 eV to 2.0 eV for the VdW (k���駥) plane. (b) The polarization-dependent EER spectra of Nb-doped MoSe2 single crystal over the energy range 1.4 eV to 2.0 eV for the edge (k�姞) plane. The solid curves are the least-squares fits to first-derivative Lorentzian lineshape expression which yield the excitonic transition energies as indicated by the arrows. 87
Fig. 5.4 (a) The EER spectra of Re-doped and undoped MoSe2 single crystals over the energy range of 1.35 eV to 2.0 eV for the VdW (k���駥) plane. (b) The polarization-dependent EER spectra of Re-doped MoSe2 single crystal over the energy range 1.3 eV to 2.0 eV for the edge (k�姞) plane. The solid curves are the least-squares fits to first-derivative Lorentzian lineshape expression which yield the excitonic transition energies as indicated by the arrows. 88
Fig. 5.5 (a) Relative photovoltage spectra for Re-doped and undoped WSe2 single crystals at 300 K. (b) Square root of the relative photovoltage intensity for Re-doped WSe2 and undoped WSe2 single crystals for the determination of the indirect band gap. 95
Fig. 5.6 (a) The EER spectra of undoped and Re-doped WSe2 single crystals over the energy range of 1.4 eV to 2.4 eV for the VdW (k���駥) plane. (b) The polarization dependent EER spectra of Re-doped WSe2 single crystal over the energy range 1.4 eV to 2.4 eV for the edge (k�姞) plane. The solid curves are the least-squares fits to first-derivative Lorentzian lineshape expression which yield the excitonic transition energies as indicated by the arrows. 96
Fig. 5.7 (a) Relative photovoltage spectra for W-doped and undoped ReSe2 single crystals at 300 K. (b) Square root of the relative photovoltage intensity for W-doped and undoped ReSe2 single crystals for the determination of the indirect band gap. 101
Fig. 5.8 (a) Relative photovoltage spectra for Mo-doped and undoped ReSe2 single crystals at 300 K. (b) Square root of the relative photovoltage intensity for Mo-doped and undoped ReSe2 single crystals for the determination of the indirect band gap. 102
Fig. 5.9 Polarization-dependent EER spectra over the energy range 1.25 eV to 1.45 eV. The solid curves are the least-squares fits to first-derivative Lorentzian lineshape expression which yield the excitonic transition energies. Arrows at the bottom of the figures show the peak positions of the two interband excitonic features, and , respectively. (a) W-doped and undoped ReSe2 single crystals. (b) Mo-doped and undoped ReSe2 single crystals. 103
Fig. 6.1 PzR spectra of the A and B excitonic transitions at 15, 77, 100, 150, 200, 250 and 300 K showing their temperature dependence for (a) Nb-doped MoSe2 (b) Re-doped MoSe2 and (c) undoped MoSe2. The solid curves are the least-squares fits to first-derivative Lorentzian lineshape expression which yield the excitonic transition energies as indicated by the arrows. 109
Fig. 6.2 PzR spectra of the A and B excitonic transitions at 15, 77, 100, 150, 200, 250 and 300 K showing their temperature dependence for (a) Re-doped WSe2 and (b) undoped WSe2. The solid curves are the least-squares fits to first-derivative Lorentzian lineshape expression which yield the excitonic transition energies as indicated by the arrows. 110
Fig. 6.3 Temperature variations of the A1, A2 and B excitonic transition energies for (a) Nb-doped MoSe2 (b) Re-doped MoSe2 and (c) undoped MoSe2. Representative error bars are shown. The dashed curves are the least-squares fits to Eq. (3.10) and the solid curves are the least-squares fits to Eq. (3.11). 114
Fig. 6.4 Temperature variations of the A1, A2 and B excitonic transition energies for (a) Re-doped WSe2 and (b) undoped WSe2. Representative error bars are shown. The dashed curves are the least-squares fits to Eq. (3.10) and the solid curves are the least-squares fits to Eq. (3.11). 115
Fig. 6.5 Temperature variations of the broadening parameters of the A1, A2 and B excitonic transition energies for (a) Nb-doped MoSe2 (b) Re-doped MoSe2 and (c) undoped MoSe2. Representative error bars are shown. The dashed curves are the least-squares fits to Eq. (3.12). 119
Fig. 6.6 Temperature variations of the broadening parameters of the A1, A2 and B excitonic transition energies for (a) Re-doped WSe2 and (b) undoped WSe2. Representative error bars are shown. The dashed curves are the least-squares fits to Eq. (3.12). 120
Fig. 6.7 Unpolarized PzR spectra of (a) W-doped ReSe2 (b) Mo-doped ReSe2, (c) undoped ReSe2 at several representative temperatures. The solid curves are the least-squares fits to first-derivative Lorentzian lineshape expression which yield the excitonic transition energies ( and ) as indicated by the arrows. 124
Fig. 6.8 Polarized PzR spectra of (a) W-doped ReSe2 (b) Mo-doped ReSe2 and (c) undoped ReSe2 at 15 and 300 K. The solid curves are the least-squares fits to first-derivative Lorentzian lineshape expression which yield the excitonic transition energies ( and ) as indicated by the arrows. 125
Fig. 6.9 Temperature variations of the and excitonic transition energies for (a) W-doped ReSe2 and (b) undoped ReSe2. Representative error bars are shown. The dashed curves are the least-squares fits to Eq. (3.10) and the solid curves are the least-squares fits to Eq. (3.11). 130
Fig. 6.10 Temperature variations of the broadening parameters of the and excitonic transition energies for (a) W-doped ReSe2 and (b) undoped ReSe2. Representative error bars are shown. The dashed curves are the least-squares fits to Eq. (3.12). 131
LIST OF TABLES

Table 1.1 Most common polytypes found in TMDCs. 5
Table 1.2 Crystallographic data for 2H-WS2, 2H-WSe2, 2H-MoS2, 2H-MoSe2 [1]. 7
Table 1.3 Crystallographic data for Triclinic-ReSe2 [6]. 7
Table 1.4 Preparation conditions for the TMDCs single crystals used in this work. 13
Table 2.1 The calculated interplane distance dhkl (measured in Å units) of as-grown samples with 2H structure are deduced from the XRD patterns. 32
Table 2.2 Lattice parameters of as-grown samples with 2H structure and lattice constants of previous reports are listed for comparison. Some of the values quoted from previous reports for comparison purpose. 33
Table 2.3 The calculated dhkl (measured in Å units) of as-grown samples with triclinic structure are deduced from the XRD patterns. Some of the values quoted from previous reports for comparison purpose. 39
Table 2.4 Lattice parameters of as-grown samples with triclinic structure and lattice constants of previous reports are listed for comparison purpose. 40
Table 4.1 Electrical anisotropic transport properties of Nb-doped, Re-doped MoSe2 and undoped MoSe2 single crystals at 300 K. Some of the values quoted from previous reports for references and comparisons. 70
Table 4.2 Electrical anisotropic transport properties of Re-doped and undoped WSe2 single crystals at 300 K. Some of the values quoted from previous reports for references and comparisons. 74
Table 4.3 Electrical anisotropic transport properties of W-doped, Mo-doped and undoped ReSe2 single crystals at 300 K. Some of the values quoted from previous reports for references and comparisons. 79
Table 5.1 Optical anisotropic properties of Nb-doped, Re-doped and undoped MoSe2 single crystals at 300 K. Some of the values quoted from previous reports for comparison purpose. 90
Table 5.2 Optical anisotropic properties of Re-doped and undoped WSe2 single crystals at 300 K. Some of the values quoted from previous reports for comparison purpose. 98
Table 5.3 Optical anisotropic properties of W-doped, Mo-doped and undoped ReSe2 single crystals at 300 K. Some of the values quoted from previous reports for comparison purpose. 104
Table 6.1 Direct band gap Eg and exciton binding energy Re of the A exciton series for Nb-doped MoSe2, Re-doped MoSe2 / WSe2 and undoped MoSe2 / WSe2. Some of the values quoted from previous reports for comparison purpose. 107
Table 6.2 Direct transition energies and broadening parameters of the excitons A and B of Nb-doped, Re-doped and undoped MoSe2. If a Rydberg series is observed, the energy of the n = 1 feature is observed. Some of the values quoted from previous reports for comparison purpose. 112
Table 6.3 Direct transition energies and broadening parameters of the excitons A and B of Re-doped and undoped WSe2. If a Rydberg series is observed, the energy of the n = 1 feature is observed. Some of the values quoted from previous reports for comparison purpose. 113
Table 6.4 Values of Varshni and Bose-Einstein type fitting parameters describe the temperature dependence of the excitonic transition energies of Nb-doped MoSe2, Re-doped MoSe2 / WSe2 and undoped MoSe2 / WSe2. Some of the values quoted from previous reports for comparison purpose. 116
Table 6.5 Values of the parameters which describe the temperature dependence of broadening function ��(T) of the excitonic transition energies of Nb-doped MoSe2, Re-doped MoSe2 / WSe2 and undoped MoSe2 / WSe2. Some of the values quoted from previous reports for comparison purpose. 121
Table 6.6 Direct transition energies and broadening parameters of the excitonic features from PzR measurements for W-doped, Mo-doped and undoped ReSe2. Some of the values quoted from previous reports for comparison purpose. 126
Table 6.7 Values of Varshni and Bose-Einstein type fitting parameters describe the temperature dependence of the excitonic transition energies of W-doped and undoped ReSe2. Some of the values quoted from previous reports for comparison purpose. 127
Table 6.8 Values of the parameters which describe the temperature dependence of broadening function ��(T) of the excitonic transition energies of W-doped and undoped ReSe2. Some of the values quoted from previous reports for comparison purpose. 129
1. J. A. Wilson and A. D. Yoffe, “The Transition Metal Dichalcogenides: Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties”, Adv. Phys., Vol. 18, pp. 193-212 (1969).
2. L. F. Mattheiss, “Band Structures of Transition-metal-dichalcogenide Layer Compounds”, Phys. Rev. B, Vol.8, No.8, pp. 3719-3740 (1973).
3. G. B. DubrovskiV, “Regularities of the Formation of Polytype Structures in Layered Metal Dichalcogenides”, Phys. Solid State, Vol. 45, No. 9, pp. 1669-1671 (2003).
4. M. Kertesz and R. Hoffmann, “Octahedral vs. Trigonal-prismatic Coordination and Clustering in Transition-metal Dichalcogenides”, J. Am. Chem. Soc., Vol. 106, pp. 3453-3460 (1984).
5. N. W. Alcock and A. Kjekshus, “The Crystal Structure of ReSe2”, Acta Chem. Scand., Vol. 19, pp. 79-94 (1965).
6. J. C. Wildervanck and F. Jellinek, “The Dichalcogenides of Technetium and Rhenium”, J. Less-Common Met., Vol. 24, pp. 73-81 (1971).
7. J. A. Wilson, F. J. DiSalvo, and S. Mahajan, “Charge-density Waves and Superlattices in the Metallic Layered Transition Metal Dichalcogenides”, Adv. Phys., Vol. 24, pp. 117-201 (1975).
8. E. Doni and R. Girlanda, Electronic Structure and Electronic Transitions in Layered Materials (V. Grasso, ed.), D. Reidel Publishing Company, Dordrecht (1986).
9. C. M. Fang, R. A. de Groot and C. Haas, “Bulk and Surface Electronic Structure of 1T-TiS2 and 1T-TiSe2”, Phys. Rev. B, Vol. 56, No. 8, pp. 4455-4463 (1997).
10. Th. B�刌er, R. Severin, A. M�氡ler, C. Janowitz, R. Manzke, D. Vo���z�nP. Kr�殶er, A. Mazur and J. Pollmann, “Band Structure of MoS2, MoSe2 and α-MoTe2: Angle-resolved Photoelectron Spectroscopy and ab initio calculations”, Phys. Rev. B, Vol. 64, pp. 235305(1-11) (2001).
11. C. M. Fang, G. A. Wiegers, C. Haas and R. A. de Groot, “Electronic Structures of ReS2, ReSe2 and TcS2 in the Real and the Hypothetical Undistorted Structures”, J. Phys.: Condens. Matter, Vol. 9, pp. 4411-4424 (1997).
12. H. Schäffer, Chemical Transport Reactions, Academic Press, New York (1964).
13. R. Lieth and J. Terhell, Preparation and Crystal Growth of Materials with Layered Structure, D. Reidel Publishing Company, Dordrecht (1977).
14. A. Aruchamy (ed.), Photoelectrochemistry and Photovoltaics of Layered Semiconductors, Kluwer Academic Publishers, Dordrecht (1992).
15. J. I. Pankove, Optical Processes in Semiconductors, Dover, New York (1975).
16. M. P. Deshpande, P. D. Patel, M. N. Vashi and M. K. Agarwal, “Effect of Intercalating Indium in WSe2 Single Crystals”, J. Cryst. Growth, Vol. 197, pp. 833-840 (1999).
17. W. Y. Liang, Intercalation in Layered Materials, (M. S. Dresselhaus, ed.), Perseus Publishing, New York (1986).
18. R. H. Friend and A. D. Yoffe, “Electronic Properties of Intercalation Complexes of Transition Metal Dichalcogenides”, Adv. Phys. Vol. 36 No. 1, pp. 1-94 (1987).
19. F. L�影y, Ph. Schmid and H. Berger, “Electrical Properties of MoSe2 Single Crystals Doped with Nb and Re”, Philos. Mag., Vol. 34, No. 6, pp. 1129-1139 (1976).
20. K. K. Kam, C. L. Chang and D. W. Lynch, “Fundamental Absorption Edges and Indirect Band Gaps in W1-xMoxSe2 (0≦x≦1)”, J. Phys. C: Solid State Phys., Vol. 17, pp. 4031-4040 (1984).
21. J. B. Legma, G. Vacquier, H. Traore and A. Casalot, “Improvement in Photocurrent with n-type Niobium- and Rhenium-doped Molybdenum and Tungsten Diselenide Single Crystals”, Mater. Sci. and Eng. Vol. B8, pp. 167-174 (1991).
22. M. K. Agarwal, P. D. Patel and S. K. Gupta, “Effect of Doping MoSe2 Single Crystals with Rhenium”, J. Cryst. Growth, Vol. 129, pp. 559-562 (1993).
23. C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao and K. K. Tiong, “Temperature Dependence of Energies and Broadening Parameters of the Band-edge Excitons of Mo1-xWxSe2 Single Crystals”, J. Phys.: Condens. Matter, Vol. 10, pp. 9317-9328 (1998).
24. K. K. Tiong, P. C. Liao, C. H. Ho and Y. S. Huang, “Growth and Characterization of Rhenium-doped MoS2 Single Crystals”, J. Cryst. Growth, Vol. 205, pp. 543-547 (1999).
25. K. K. Tiong and T. S. Shou, “Anisotropic Electrolyte Electroreflectance Study of Rhenium-doped MoS2”, J. Phys.: Condens. Matter, Vol. 12, pp. 5043-5052 (2000).
26. A. Herold, Chemical Physics of Intercalation, Vol. B172 (A.P. Legrand and S. Flandrois, eds.), Plenum Press, New York (1987).
27. N. F. Mott, Metal-insulator Transitions, Taylor and Francis Ltd., London (1974).
28. L. Kulyuk, E. Bucher, L. Charron, E. Fortin, A. Naterprov and O. Schenker, “Bound Exciton Luminescence of the Intercalated Tungsten Dichalcogenide Layer Compounds”, Nonlinear Opt., Vol. 29, No. 7-9, pp. 501-506 (2002).
29. S. R. Cohen, L. Rapport, E. A. Ponomarev, H. Cohen, T. Tsirlina, R. Tenne and C. Levy-Clement, “The Tribological Behavior of Type II Textured MX2 (M = Mo, W; X = S, Se) Films”, Thin Solid Films, Vol. 324, pp. 190-197 (1998).
30. C. H. Ho and C. E. Huang, “Optical Property of the Near Band-edge Transitions in Rhenium Disulfide and Diselenide”, J. Alloys and Compounds, Vol. 383, pp. 74-79 (2004).
31. V. Podzorov, M. E. Gershenson, Ch. Kloc, R. Zeis and E. Bucher, “High-mobility Field-effect Transistors Based on Transition Metal Dichalcogenides”, Appl. Phys. Lett., Vol. 84, No. 17, pp. 3301-3303 (2004).
32. J. M. Huang and D. F. Kelley, “Synthesis and Characterization of MoSe2 and WSe2 Nanoclusters”, Chem. Mater., Vol. 12, No. 10, pp. 2825-2828 (2000).
33. T. J. Wieting and M. Schl�洊er, Electrons and Phonons in Layered Crystal Structures, D. Reidel Publishing Company, Dordrecht (1979).
34. R. Harpeness, A. Gedanken, A. M. Weiss and M. A. Slifkin, “Microwave-assisted Synthesis of Nanosized MoSe2”, J. Mater. Chem., Vol. 13, pp. 2603-2606 (2003).
35. J. V. Marzik, R. Kershaw, K. Dwight, and A. Wold, “Photoelectronic Properties of ReS2 and ReSe2 Single crystals”, J. Solid State Chem., Vol. 51, pp. 170-175 (1984).
36. B. L. Wheeler, J. K. Leland, and A. J. Bard, “Semiconductor Electrodes LX. Photoelectrochemistry of p-ReS2 and p-ReSe2 in Aqueous Solutions”, J. Electrochem. Soc. Electrochemical Science and Technology, Vol. 133, No. 2, pp. 358-361 (1986).
37. W. Y. Liang, “Optical Anisotropy in Layer Compounds”, J. Phys. C: Solid State Phys., Vol. 6, pp. 551-565 (1973).
38. G. Weiser, “Modulation Spectroscopy on Anisotropic Systems”, Surf. Sci., Vol. 37, pp. 175-197 (1973).
39. S. Y. Hu, S. C. Lin, K. K. Tiong, P. C. Yen, Y. S. Huang, C. H. Ho and P. C. Liao, “Growth and Characterization of Tungsten and Molybdenum-doped ReSe2 Single Crystals”, J. Alloys and Compounds, Vol. 383, pp. 63-68 (2004).
40. S. Y. Hu, M. C. Cheng, K. K. Tiong, P. C. Yen, Y. S. Huang and C. H. Ho, “Electrical and Optical Characterization of Niobium and Rhenium Doped Molybdenum Diselenide”, ECS, Proc. Vol. 2004-02, pp. 161-169 (2004).
41. S. Y. Hu, M. C. Cheng, S. C. Lin, K. K. Tiong, P. C. Yen, Y. S. Huang, C. H. Ho and P. C. Liao, “Anisotropic Piezoreflectance Study of the Band-edge Excitons of W-doped ReSe2 Single Crystals”, 2003 Electron Devices and Materials Symposium, Keelung, Taiwan, pp. 284-287 (2003).
42. S. Y. Hu, M. C. Cheng, K. K. Tiong and Y. S. Huang, “The Electrical and Optical Anisotropy of Rhenium-doped WSe2 Single Crystals”, J. Phys.: Condens. Matter, Vol. 17, pp. 1-9 (2005).
43. Y. P. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors”, Physica, Vol. 34, pp. 149-154 (1967).
44. P. Lantenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband Critical Points of GaAs and their Temperature Dependence”, Phy. Rev. B, Vol. 35, No. 17, pp. 9174-9189 (1987).
45. P. Lantenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature Dependence of the Dielectric Function and Interband Critical Points in Silicon”, Phys. Rev. B, Vol. 36, No. 9, pp. 4821-4830 (1987).
46. SigmaPlot for Windows Version 9.0 (Systat Software, Inc.), (2004).
47. D. K. Schroder, Semiconductor Material and Device Characterization 2nd edition, Wiley, New York, (1998).
48. L. V. Azároff and M. J. Buerger, The Powder Method in X-ray Crystallography, McGraw-Hill, New York, pp. 46-55 (1958).
49. C. H. Ho, Y. S. Huang, P. C. Liao and K. K. Tiong, “Crystal Structure and Band-edge Transitions of ReS2-xSex Layered Compounds”, J. Phys. Chem. Solids, Vol. 60, pp. 1797-1804 (1999).
50. M. Cardona, Modulation Spectroscopy, Academic, New York, (1969).
51. L. J. van der Pauw, “A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shapes”, Philips Res. Repts. Vol. 13, pp. 1-9 (1958).
52. C. H. Ho, “Crystal Growth and Characterization of ReS2-xSex Layered Semiconductors”, Ph.D. dissertation, National Taiwan University of Science and Technology, (1999).
53. “Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors”, ASTM Designation F76, Annual Book of ASTM Standards, Vol. 10.05 (2000).
54. K. K. Kam and B. A. Parkinson, “Detailed Photocurrent Spectroscopy of the Semiconducting Group VI Transition Metal Dichalcogenides”, J. Phys. Chem., Vol. 86, pp. 463-467 (1982).
55. Y. S. Huang and Y. F. Chen, “Electronic-structure Study of RuS2”, Phy. Rev. B, Vol. 38, No. 12, pp. 7997-8001 (1988).
56. F. H. Pollark and H. Shen, “Modulation Spectroscopy of Semiconductors: Bulk / Thin Film, Microstructures, Surface / Interfaces and Devices”, Materials Science and Engineering:R : Reports, Vol. 10, Iss. 7-8, pp. 275-372 (1993).
57. P. Salvador, M. Pujadas, and G. Campet, “Photoreactions at the n-type-WSe2-electrode Interface: Study by Electrolyte Electroreflectance and Photocurrent Transient Measurements”, Phys. Rev. B, Vol. 38, pp. 9981-9988 (1988).
58. D. E. Aspnes, “Modulation Spectroscopy/electric Field Effects on the Dielectric Function of Semiconductors”, in Handbook on Semiconductors, edited by M. Balkanski, North Holland, Amsterdam, pp.109-154 (1980).
59. B. O. Seraphin and N. Bottka, “Band-Structure Analysis from Electro-reflectance Studies”, Phys. Rev., Vol. 145, pp. 628-636 (1966).
60. R. Coehoorn, C. Haas and R. A. de Groot, “Electronic Structure of MoSe2, MoS2 and WSe2. II. The Nature of the Optical Band Gaps”, Phys. Rev. B, Vol. 35, No. 12, pp. 6203-6206 (1987).
61. W. T. Hicks, “Semiconducting Behavior of Substituted Tungsten Diselenide and its Analogues”, J. Electrochem. Soc., Vol. 111, pp. 1058-1065 (1964).
62. R. Fivaz, and E. Mooser, “Mobility of Charge Carriers in Semiconducting Layer Strucutres”, Phys. Rev. B, Vol. 163, No. 3, pp. 743-755 (1967).
63. B. L. Evans and, R. A. Hazelwood, “Optical and Structural Properties of MoSe2”, Phys. Stat. Sol. (b) Vol. 4, pp. 181-192 (1971).
64. A. J. Grant, T. M. Griffiths, G. D. Pitt and A. D. Yoffe, “The Electrical Properties and the Magnitude of the Indirect Gap in the Semiconducting Transition Metal Dichalcogenide Layer Crystals”, J. Phys. C: Solid State Phys., Vol. 8, pp. L17-L23 (1975).
65. S. H. El-Mahalawy and B. L. Evans, “Temperature Dependence of the Electrical Conductivity and Hall Coefficient in 2H-MoS2, MoSe2, WSe2 and MoTe2”, Phys. Stat. Sol. (b) Vol. 79, pp. 713-722 (1977).
66. L. C. Upadhyayulu, J. J. Loferski, A. Wold, W. Grint and R. Kershaw, J. Appl. Phys. Vol. 39, No. 10, pp 4736-4740 (1968).
67. R. Sp�搬, U. Elrod, M. Lux-Steiner and E. Bucher, “pn Junctions in Tungsten Diselenide”, Appl. Phys. Lett., Vol. 43, No. 1, pp. 79-81 (1983).
68. R. Sp�搬, M. Lux-Steiner, M. Obergfell and E. Bucher, “n-MoSe2/p-WSe2 Heterojunctions”, Appl. Phys. Lett., Vol. 47, No. 8, pp. 871-873 (1985).
69. M. K. Agarwal, V. V. Rao and V. M. Pathak, “Growth of n-type and p-type WSe2 Crystals Using SeCl4 Transporter and their Characterization”, J. Cryst. Growth, Vol. 97, pp. 675-679 (1989).
70. K. K. Tiong, C. H. Ho and Y. S. Huang, “The Electrical Transport Properties of ReS2 and ReSe2 Layered Crystals”, Solid State Commun., Vol. 111, pp. 635-640 (1999).
71. G. Leicht, H. Berger, and F. Levy, “The Growth of n- and p-type ReS2 and ReSe2 Single Crystals and their Electrical Properties”, Solid State Commun., Vol. 61, No. 9, pp. 531-534 (1987).
72. A. R. Beal, J. C. Knights and W. Y. Liang, “Transmission Spectra of Some Transition Metal Dichalcogenides: II. Group VIA: Trigonal Prismatic Coordination”, J. Phys. C: Solid State Phys., Vol. 5, pp. 3540-3551 (1972).
73. A. M. Goldberg, A. R. Beal, F. A. L�影y, and E. A. Davis, “The Low-energy Absorption Edge in 2H-MoS2 and 2H-MoSe2”, Philos. Mag., Vol. 32, pp. 367-378 (1975).
74. W. Kautek, H. Gerischer and H. Tributsch, “The Role of Carrier Diffusion and Indirect Optical Transitions in the Photoelectrochemical Behavior of Layer Type d-band Semiconductors”, J. Electrochem. Soc., Vol. 127, No. 11, pp. 2471-2478 (1980).
75. A. Anedda, E. Fortin and F. Raga, “Optical Spectra in WSe2”, Can. J. Phys., Vol. 57, pp. 368-374 (1979).
76. A. R. Beal and W. Y. Liang, “Excitons in 2H-WSe2 and 3R-WS2”, J. Phys. C: Solid State Phys., Vol. 9, pp. 2459-2466 (1976).
77. A. M. Chaparro, P. Salvador, B. Coll and M. Gonzalez, “Electroreflectance Anisotropy at the WSe2 Layer Semiconductor”, Surf. Sci., Vol. 293, pp. 160-164 (1993).
78. C. H. Ho, Y. S. Huang, K. K. Tiong and P. C. Liao, “Absorption-edge Anisotropy in ReS2 and ReSe2 Layered Semiconductors”, Phys. Rev. B, Vol. 58, No. 24, pp. 16130-16135 (1998).
79. C. H. Ho, P. C. Yen, Y. S. Huang and K. K. Tiong, “Polarized Electrolyte- electroreflectance Study of ReS2 and ReSe2 Layered Semiconductors”, J. Phys.: Condens. Matter, Vol. 13, pp. 8145-8152 (2001).
80. Th. Straub, K. Fauth, Th. Finteis, M. Hengsberger, R. Claessen, P. Steiner and S. H�殄ner, “Valence-band Maximum in the Layered Semiconductor WSe2: Application of Constant-energy Contour Mapping by Photoemission”, Phys. Rev. B, Vol. 53, No. 24, pp. 16152-16155 (1996).
81. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R. A. de Groot and A. Wold, “Electronic Structure of MoSe2, MoS2 and WSe2. I. Band-structure Calculations and Photoelectron Spectroscopy”, Phys. Rev. B, Vol. 35, No. 12, pp. 6195-6202 (1987).
82. A. R. Beal and H. P. Hughes, “Kramers-Kr�圢ig Analysis of the Reflectivity Spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2”, J. Phys. C: Solid State Phys., Vol. 12, pp. 881-890 (1979).
83. A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kr�圢ig Analysis of the Reflectivity Spectra of 3R-WS2 and 2H-WSe2”, J. Phys. C: Solid State Phys., Vol. 9, pp. 2449-2457 (1976).
84. P. C. Yen, H. P. Hsu, Y. T. Liu, Y. S. Huang and K. K. Tiong, “Temperature Dependences of Energies and Broadening Parameters of the Band-edge Excitons of Re-doped WS2 and 2H-WS2 Single Crystals”, J. Phys.: Condens. Matter, Vol. 16, pp. 6995-7005 (2004).
85. K. K. Tiong, T. S. Shou and C. H. Ho, “Temperature Dependence Piezoreflectance Study of the Effect of doping MoS2 with Rhenium”, J. Phys.: Condens. Matter, Vol. 12, pp. 3441-3449 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top