|
[1] P. Suetens, P. Fua, and A. J. Hanson, “Computational strategies for object recognition,” ACM Comput. Surv., vol. 24, pp. 5-61, Mar. 1992. [2] M. Boman, K. Hohne, U. Tiede, and M. Riemer, “3-D segmentation of MR images of the head for 3-D display,” IEEE Trans. Med. Image, vol. 9, pp. 253-277, June 1990. [3] P. Willemin, T. Reed, and M. Kunt, “Image sequence coding by split and merge,” IEEE Trans. Commun., vol. 39, pp. 1845-1855, Dec. 1991. [4] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Prentice-Hall, New Jersey 2002. [5] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern Recognition Soc., pp. 1277-1294, 1993. [6] J. Basak, B. Chanda, and D. D. Majumder, “On edge and line linking with connectionist models,” IEEE Trans. System, Man, and Cybernetics, vol. 24, pp. 413-428, Mar. 1994. [7] S. A. Hojjatoleslami and J. Kittler, “Region growing: a new approach,” IEEE Trans. Image Processing, vol. 7, pp.1079-1084, Jul. 1998. [8] S. Chen, W. Lin, and C. Chen, “Split-and-merge image segmentation based on localized feature analysis and statistical tests,” CVGIP: Graph. Models Image Processing, vol. 53, pp. 457-475, Sep. 1991. [9] T. Pavlidis and Y. Liow, “Integrating region growing and edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 225-233, Mar. 1990. [10] L. D. Griffin, A. C. F. Colchester, and G. P. Robinson, “Scale and segmentation of grey-level images using maximum gradient paths,” Image Vis. Comput., vol. 10, pp. 389-402, 1992. [11] D. Hagyard, M. Razaz, and P.Atkin, “Analysis of watershed algorithms for greyscale images”, IEEE Proc. Int. Conf. Image Processing, 1996, pp. 41-44. [12] Nock R. and Nielsen F. ‘Statistical region merging’, IEEE Trans. Pattern Anal. Machine Intell., vol. 26, issue 11, Nov. 2004, pp. 1452-1458. [13] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Machine. Intell., vol. 13, pp. 583-598, June 1991. [14] T. Pavlidis, Structural Pattern Recognition, New York: Springer, 1980. [15] K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, “Hybrid image segmentation using watersheds and fast region merging,” IEEE Trans. Image Processing, vol. 7, no. 12, pp. 1684-1699, Dec. 1998. [16] J. J. Hopfield, ‘Pattern recognition computation using action potential timing for stimulus representation’, Nature, vol. 376, 1995, pp. 33-36. [17] J. M. Gauch, ‘Image segmentation and analysis via multiscale gradient watershed hierarchies’, IEEE Trans. Image Processing, vol. 8, no. 1, Jan. 1999, pp. 69-79. [18] Y. W. Yu, ‘Image Segmentation based on improved watershed techniques’, Master thesis, National Taiwan Ocean University, Jun 2000. [19] A. Papoulis, and S.U. Pillai, , Probability, Random Variables, and Stochastic Processes, 4th Ed. McGrawHill, 2002. [20] B. Zeidman, Designing with FPGAs and CPLDs, CMP Books, Sep., 2002. [21] S. Haykin, , Neural Networks, 2nd Ed. Prentice-Hall, 1999. [22] T. Ban and S. Abe. ’Spatially Chunking Support Vector Clustering Algorithm,’ Proc. IEEE Intnl Joint Conf. on Neural Networks, Vol. 1, pp.25-29, July, 2004. [23] F. W. Su, ‘Similarity Fusion Algorithm Applied to Image Segmentation’, Master thesis, National Taiwan Ocean University, Jun 2004.
|