跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊燕智
研究生(外文):Yan-Zhi Yang
論文名稱:研製正-本-負(p-i-n)多晶矽鍺(Poly-SiGe)薄膜應用於光感測器與太陽光電池之效能分析
論文名稱(外文):A performance study and fabrication of pin-poly-Si1-xGex films for photodetecting and solar-cell
指導教授:何志傑何志傑引用關係張忠誠張忠誠引用關係
指導教授(外文):Jyh-Jier HoChung-Cheng Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:119
中文關鍵詞:低壓化學氣象沈積多晶矽鍺薄膜光感測器太陽光電池
外文關鍵詞:LPCVDPoly-Si0.82Ge0.18 filmsPhotodetectorSolar Cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文運用低壓化學氣相沈積(LPCVD)系統於620℃下成長多晶矽鍺於4吋矽基板上。由實驗結果發現,退火過程提升了多晶矽鍺薄膜(Poly-Si0.82Ge0.18)的特性。首先藉由SEM、AFM、SIMS、EDS和XRD進行退火前後之薄膜分析,且得到最佳條件為800℃退火30分鐘。其次,將此最佳退火條件研製Poly-Si0.82Ge0.18薄膜之( p-i-n)光感測器和太陽光電池。
於元件製作方面,吾人首先製作Si 基板/ SiO2 / p+- Poly-Si0.82Ge0.18/p-Poly-Si0.82Ge0.18/i-Poly-Si0.82Ge0.18(300~900nm)/n- Poly-Si0.82Ge0.18/ n+-poly Si0.82Ge0.18 / ITO 結構之p-i-n光感測器。經由實驗發現,本質層厚度提升了p-i-n光感測器特性,且吾人得到此p-i-n光感測器之最佳本質層厚度是600nm;其中所得之最佳特性為:於固定光照度3.0mW、逆向偏壓10V時,光電流為86μA、響應係數為0.0286A/W、量子效率為50.9%。
其次,吾人依此最佳p-i-n製程條件,製作不同結構的p-i-n太陽光電池。經由實驗發現,添加緩衝層(Buffer Si、P-型)的太陽光電池結構可提升了p-i-n太陽光電池的特性。經由短路電流(JSC)、開路電壓(VOC)、填充因子(FF)、轉換效率(η)的分析,吾人得到最佳結構是Si 基板 / n+-poly-Si / n-a-Si / i-poly-Si0.82Ge0.18 / p--a-Si / p+-a-Si / ITO,其轉換效率提升從1.349%至1.926%。
In this thesis, poly-Si1-xGex layers with x≦0.2 were epitaxially grown on a 4 inch (100) substrate by means of low pressure chemical vapor deposition (LPCVD) at 620℃ temperature. From our experiment results, we found that the annealed processes improved the characteristics of poly-Si1-xGex thin films. At first, the optimum annealing condition was obtained at 800℃ for 30 minutes from the analysis of SEM, AFM, SIMS, EDS, and XRD among different annealing conditions (0~900℃). Then, we use this optimal annealing condition of the poly-Si1-xGex thin films to fabricate p-i-n photodetectors and p-i-n solar cells.
In the preparation of devices, we firstly prepared p-i-n photodectectors of Si structure/ SiO2 / p+- Poly-Si0.82Ge0.18 / p-Poly-Si0.82Ge0.18/ i-Poly-Si0.82Ge0.18 (300~900nm) / n- Poly-Si0.82Ge0.18 / n+-poly Si0.82Ge0.18 / ITO. The experimental results showed that the intrinsic layer thicknesses improved the characteristics of p-i-n photodectectors, and we found that the optimum intrinsic layer thickness was 600nm. For the developed p-i-n photodetector under a 3.0mW-illuminated and 10V-reverse bias, the optimal values of photocurrent, responsivity, and quantum efficiency were 86(μA), 0.0286 (A/W), and 50.9(%), respectively.
Next, we fabricated p-i-n solar cells with different structures by the optimum p-i-n fabricating conditions. The experimental results showed that the structures of solar cells with buffer layer, i.e., (i-Si, p--Si) improved the characteristics of p-i-n solar cells. We found that the optimum p-i-n solar cell structure, i.e., Si substrate / n+-type poly-Si / n-type a-Si / i-poly-Si0.82Ge0.18 / p--type a-Si / p+-type a-Si / ITO from the analysis of JSC (mA/cm2), VOC (V), Fill factor(%), conversion efficiency(%). The conversion efficiency of the developed solar cell improves from 1.349% to 1.926%.
Chapter 1 Introduction...................................1
1-1. Overview............................................1
1-2. Outline.............................................4
Chapter 2 Deposition System and Experiment Equipments....6
2-1. Low Pressure Chemical Vapor Deposition (LPCVD)......6
2-2. Ion Implanter.......................................8
2-3. Magnetron Sputter..................................10
2-4. Thermal Evaporator.................................11
2-5. Anneal System......................................13
2-6. Exposure and Photolithography Equipment............14
Chapter 3 Characteristic Analysis of the Poly
Si0.82Ge0.18 films............................16
3-1. Introduction.......................................16
3-2. The Fabrication Process of Poly-Si0.82Ge0.18
Films............................................17
3-2-1 Cleaning..........................................17
3-2-2 Growth Process....................................18
3-3. Scanning Electron Microscope (SEM) Analysis........19
3-4. X-ray Diffraction (XRD) Analysis...................24
3-5. Energy Dispersive X-ray Spectrometer (EDS)
Analysis...........................................29
3-6. Atomic Force Microscopic (AFM) Analysis............30
3-7. Secondary-Ion Mass Spectrometry(SIMS) Analysis.....34
3-8. Conclusion.........................................35
Chapter 4 p-i-n Photodetector...........................36
4-1. Introduction.......................................36
4-2. Theoretical Analysis of p-i-n Photodetector........37
4-2-1 Theoretical Analysis..............................37
4-2-2 Dark current mechanisms...........................39
4-2-3 Quantum Efficiency................................39
4-2-4 Responsivity......................................40
4-3. The fabrication of p-i-n Photodiode................41
4-4. Results and Discussion.............................48
Chapter 5 Solar cell....................................73
5-1. Introduction.......................................73
5-2. Theoretical Analysis of solar sell device..........74
5-2-1 Principles of solar cell..........................74
5-2-2 The Types of Solar Cell...........................75
5-2-3 Fill Factor (FF)..................................76
5-2-4 Conversion Efficiency (η.........................77
5-3. The fabrication of solar cell......................80
5-4. Results and Discussion.............................88
Chapter 6 Conclusion and prospect.......................93
6-1. Conclusion.........................................93
6-2. Prospect...........................................94
Reference.................................................97
[1]M.E. Gueunier *, J.P. Kleider , P. Chatterjee , P. Roca i Cabarrocas , Y. Poissant , “Study of pm-SiGe:H thin films for p.i.n devices and tandem solar cells. ” Thin Solid Films 427 (2003) 247.251.
[2]E. Maruyama, S. Okamoto, A. Terakawa, W. Shinohara, M. Tanaka and S. Kiyama. “Toward stabilized 10% ef.ciency of large-area (>5000 cm2) a-Si/a-SiGe tandem solar cells using high-rate deposition.” Sol.Energy Mater. Sol. Cells 74 (2002), pp. 339–349.
[3]S. Okamoto, E. Maruyama, A. Terakawa, W. Shinohara, S. Nakano, Y. Hishikawa, K. Wakisaka and S. Kiyama. “Towards large-area, high-e$ciency a-Si/a-SiGe tandem solar cells.” Solar Energy Materials & Solar Cells 66 (2001) 85}94
[4]Jatindra K. Rath , F.D. Tichelaar, Ruud E.I. Schropp, “ Heterogeneous growth of microcrystalline silicon germanium.” Solar Energy Materials & Solar Cells 74 (2002) 553–560.
[5]B.D. Chapman, S.W. Han, G.T. Seidler, E.A. Stern, J.D. Cohen, S. Guha and J. Yang. “Short-range compositional randomness of hydrogenated amorphous silicon–germanium films.” J. Appl. Phys. 92 (2002), pp. 801–807.
[6]R.J. Mart�瀋-Palma, R. Guerrero-Lemus, J.D. Moreno and J.M. Mart�瀋ez-Duart. “Determination of the spectral behaviour of porous silicon based photodiodes.” Solid State Electron. 43 (1999), pp. 1153–1156.
[7]Jyh-Jier Ho, Y.K. Fang, K.H. Wu and S.C. Huang, M.S. Ju and Jing-Jenn Lin, “High-speed Amopohous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrates”, IEEE Trans. on Electron Devices, Vol 45, No.9, pp.2085-2088, September, 1998.
[8]Youri V. Pomoarev, Peter A. Stolk, and Cora Salm, “High-Performance Deep Submicron CMOS Techmology With Polycrystallic SiGe Gates, ” IEEE Trans. on Electron Devices, Vol. 47, No.4 , pp.848-855, April, 2000.
[9]V. Subramanian, K.C. Saraswat, “Optimization of silicon-germanium TFT's through the control of amorphous precursor characteristics ”, IEEE Trans on Electron Devices, Vol.45, No.8, pp.1690 – 1695, August, 1998
[10]P. Van Gerwen, T. Salter, J.B. Chevrier, K. Beart, and R.Materes, “Thin-film boron-doped Polycrystalline Si70%-Ge70% for thermopiles”, Sensors and Actuators A. 53 pp.325-329, 1996.
[11]Sherif Sedky, Paolo Fiorini, Chris Baert, Lou Hermans and Robert Mertens, “Characterization and Optimization of Infrared Poly SiGe Bolometer”, IEEE Transactions on Electron devices, Vol. 46, No. 4, April, pp.675-682, April, 1999.
[12]D. Guillet, M. Sarret, L. Haji, R. Rogel and O. Bonnaud, “ Crystallization of amorphous silicon–germanium films deposited by low pressure chemical vapor deposition”, Journal of Non-Crystalline Solids, Volumes 266-269, Part 2, 1 May 2000, Pages 689-693.
[13]C. Y. Chen and Jyh-Jier Ho, “Low-Temperature Poly-SiGe Alloy Growth of High Gain/Speed Pin Infrared Photosensor With Gold-Induced Lateral Crystallization (Au-ILC)”, IEEE Trans. on Electron Devices, vol. 50, no. 8, august 2003
[14]M. Jutzi, M. Berroth, G. Wo hl, C. Parry, M. Oehme, M. Bauer, C. Scho¨llhorn, E. Kasper, “SiGe PIN photodetector for infrared optical fiber links operating at 1.25 Gbit/s”, Applied Surface Science 224 (2004) 170–174
[15]Xunming Deng, Xianbo Liao, Sijin Han, Henry Povolny, Pratima Agarwal, “Amorphous silicon and silicon germanium materials for high-efficiency triple-junction solar cells”, Solar Energy Materials & Solar Cells 62 (2000) 89-95.
[16]A. Bouzidi, H. Hamzaoui, A.S. Bouazzi, B. Rezig, “Analytic computation of the photocurrent density in a n-6H–SiC/p-Si/n-Si/p-Si0.8Ge0.2 multilayer solar cell.” Microelectronics Journal xx (2005) 1–7.
[17]A. Daamia, A. Zerraia, J.J. Marchanda, J Poortmansb, G. Bre’ monda, “Electrical defect study in thin-.lm SiGe/Si solar cells.” Materials Science in Semiconductor Processing 4 (2001) 331–334
[18]Majeed M. Hayat, Senior Member, IEEE, Oh-Hyun Kwon, Shuling Wang, Joe C. Campbell, Fellow, IEEE, Bahaa E. A. Saleh, Fellow, IEEE, and Malvin C. Teich, Fellow, IEEE, “Boundary Effects on Multiplication Noise in Thin Heterostructure Avalanche Photodiodes: Theory and Experiment,” IEEE Trans. on Electron Devices, vol. 49, no. 12, december 2002.
[19]Sen-Shyong Fann, Yeu-Long Jiang, and Huey-Liang Hwang, Fellow, IEEE, “Operating Principles and Performance of a Novel A-Si:H P-I-N-Based X-Ray Detector for Medical Image Applications,” IEEE Trans. on Electron Devices, vol. 50, no. 2, february 2003
[20]H. Nishiwaki, K. Uchihashi, K. Takaoka, M. Nakagawa, H. Inoue, A. Takeoka, S. Tsuda, M. Ohnishi, “Development of an ultralight, flexible a-Si solar cell submodule,” Solar Energy Materials and Solar Cells 37 (1995) 295-306
[21]Khalid Said, Jozef Poortmans, Matty Caymax, Johan F. Nijs, Senior Member, IEEE, Luc Debarge, Eric Christoffel, and Abdelilah Slaoui, “Design, Fabrication, and Analysis of Crystalline Si-SiGe Heterostructure Thin-Film Solar Cells,” IEEE Trans. on Electron Devices, vol. 46, no. 10, october 1999.
[22]James T. McLeskey Jr., Pamela M. Norris, “Femtosecond transmission studies of a-Si:H, a-SiGe:H and a-SiC:H alloys pumped in the exponential band tails,” Solar Energy Materials & Solar Cells 69 (2001) 165}173.
[23]MarcJ.Madou, “Fundamentals of Microfabrication The Science of Miniaturization Second Edition,” CRC PRESS, pp.144-154
[24]Arie Ruzina , S. Marunkoa, N.V. Abrosimovb, H. Riemann,
“Dark properties and transient current response of Si0.95Ge0.05 n+p devices,” Nuclear Instruments and Methods in Physics Research A 518 (2004) 373–375.
[25]M. Bauer, C. Scho¨ llhorn, K. Lyutovich, E. Kasper , M. Jutzi, M. Berroth, “High Ge content photodetectors on thin SiGe buffers,” Materials Science and Engineering B89 (2002) 77–83.
[26]J. D. Plummer, M. D. Dea, P.B. Griffin, Silicon VLSI Technology, Prentice Hall(2000), p.151.
[27]Tsu-Jae King, Saraswat, K.C., “Polycrystalline silicon-germanium thin-film transistors.” IEEE Transactions on Electron Devices,
Volume 41, Issue 9, Sept. 1994 Page(s):1581 - 1591
[28]S.M. Sze, “Semiconductor Devices Physics and Technology 2nd Edition,” John Wiley & Sons, INC. pp.311-315 (1985,2002)
[29]Kanaan Kano , “Semiconducyor Devices,” Prentice Hall, pp.446-453 (1998)
[30]Kevin F. Brennan, “The Physics of Semiconductors with Applications to Optoelectronic Devices,” Cambridge university press, pp.637-643 (1999)
[31]A. Fojtik, J. Valenta, The Ha Stuchlikova´, J. Stuchlik, I. Pelant, J. Kocka, “Electroluminescence of silicon nanocrystals in p–i–n diode structures,” Thin Solid Films xx (2005) xxx – xxx.
[32]Yonggang Zhang, Yi Gu, Cheng Zhu, Guoqiang Hao, Aizhen Li, Tiandong Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors.” Infrared Physics & Technology 47 (2006) 257–262.
[33]Kyong-Seok Chaea, Dong-Wook Kima, Bong-Soo Kimb, Sung-Jin Somc, In-Hwan Leea, Cheul-Ro Leea, “Characteristics of back-illuminatedvisible–blind UV photodetector based on AlxGa1-xN p–i–n photodiodes.” Journal of Crystal Growth 276 (2005) 367–373.
[34]N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young, I.M. Dharmadasa, “Electrodeposition of p+, p, i, n and n+-type copper indium gallium diselenide for development of multilayer thin film solar cells,” Thin Solid Films 472 (2005) 212– 216.
[35]Pavel Stulik, Jai Singh, “Optical modelling of a single-junction p-i-n type and tandem structure amorphous silicon solar cells with perfect current matching,” Solar Energy Materials and Solar Cells 46 (1997) 271-288.
[36]M. Isomura, K. Nakahata, M. Shima, S. Taira, K. Wakisaka, M. Tanaka, S. Kiyama, “Microcrystalline silicon–germanium solar cells for multi-junction structures,” Solar Energy Materials & Solar Cells 74 (2002) 519–524
[37]M.E. Gueunier, J.P. Kleider , P. Chatterjee , P. Roca i Cabarrocas , Y. Poissant , “Study of pm-SiGe:H thin films for p.i.n devices and tandem solar cells ,” Thin Solid Films 427 (2003) 247.251
[38]Mary D. Archer Robert Hill, “Clean Electricity from Photovoltaics,” Imperial College Press, pp.58-66 (2001)
[39]Harold J. Hovel, “Solar Cells Semiconductors and Semimetals volume 11,” Academic Press,pp.181-190 (1980)
[40]P. Stulyk, J. Singh, “A simple method to simulate the influence of defects on the short circuit current in amorphous silicon solar cells,” Journal of Non-Crystalline Solids 226 (1998) 299±303
[41]P. Stulyk, J. Singh, “Calculation of collection efficiency for amorphous silicon solar cells,” Journal of Non-Crystalline Solids 242 (1998) 115±121.
[42]U. Dutta, P. Chatterjee, P. Roca i Cabarrocas, P. Chaudhuri, R. Vanderhaghen, “Calculation of the position-dependent inner collection e.ciency in PIN solar cells using an electrical–optical model,” Journal of Non-Crystalline Solids 338–340 (2004) 677–681
[43]B.E. Pieters, M. Zeman, R.A.C.M.M. van Swaaij, W.J. Metselaar, “Optimization of a-SiGe:H solar cells with graded intrinsic layers using integrated optical and electrical modeling.” Thin Solid Films 451 –452 (2004) 294–297.
[44]M. Isomura, K. Nakahata, M. Shima, S. Taira, K. Wakisaka, M. Tanaka, S. Kiyama, “Microcrystalline silicon–germanium solar cells for multi-junction structures.” Solar Energy Materials & Solar Cells 74 (2002) 519–524.
[45]M.E. Gueunier, J.P. Kleider, P. Chatterjee , P. Roca i Cabarrocas , Y. Poissant , “Study of pm-SiGe:H thin films for p.i.n devices and tandem solar cells. ” Thin Solid Films 427 (2003) 247.251.
[46]C. Y. Chen and Jyh-Jier Ho, “Low-Temperature Poly-SiGe Alloy Growth of High Gain/Speed Pin Infrared Photosensor With Gold-Induced Lateral Crystallization (Au-ILC),” IEEE Trans. on Electron Devices. vol.50, no.8, august 2003.
[47]Pavel Stulik, Jai Singh, “Optical modelling of a single-junction p-i-n type and tandem structure amorphous silicon solar cells with perfect current matching”, Solar Energy Materials and Solar Cells 46 (1997) 271-288.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top