跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/11/30 17:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張穎潔
研究生(外文):Ying-Chieh Chang
論文名稱:埋置閘極式低雜訊變晶性高電子遷移率電晶體
論文名稱(外文):Buried-Gate Low-Noise Metamorphic High Electron Mobility Transistors
指導教授:羅文雄羅文雄引用關係
指導教授(外文):Wen-Shiung Lour
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:59
中文關鍵詞:變晶性高電子遷移率電晶體砷化銦鎵-砷化鋁鎵mesa形式air形式埋置閘極
外文關鍵詞:Metamorphic HEMTInGaAs-InAlAsmesa-typeair-typeburied gate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們探討以分子束磊晶法成長線性漸變未摻雜砷化銦鋁 緩衝層的空乏型單原子摻雜砷化銦鋁/砷化銦鎵變晶性高電子遷移率電晶體。
我們已經成功地完成以不同閘極形式的空乏型單原子摻雜砷化銦鋁/砷化銦鎵變晶性高電子遷移率電晶體,包含: 是否使用鉑埋置閘極(退火前後)之mesa-或air-閘極饋線形式。其目的是因為退火後鉑金屬容易與含有砷的半導體反應並且以鉑金屬厚度成比例的深度滲入半導體中。然而我們發現只有退火後的air-形式沒有明顯的扭結效應作用。此外,我們不只是研究直流特性,包含共源極電壓電流特性、臨限電壓的位移、輸出電導、閘極漏電流還有溫度相依特性,高頻與雜訊特性使我們更了解mesa邊牆以及退火過程的影響
In this thesis, we probe into the characteristics of depletion-mode ��-doped In0.5Ga0.5As/In0.5Al0.5As metamorphic high electron mobility transistors (mHEMTs) with linearly-graded undoped InyAl1-yAs buffer layer grown by molecular beam epitaxy (MBE).
We have successfully fabricated the depletion-mode ��-doped In0.5Ga0.5As/In0.5Al0.5As HEMTs with different kinds of gate-feeder metal formation: combination of mesa- or air-type gate-feeder metal and without or with a Pt-buried gate (before or after annealing). The purpose is that Pt reacts easily with As-based compound semiconductor and sinks into the semiconductor to a depth proportion to the platinum thickness after annealing. However, we find that only the air-type MHEMT with a buried gate shows no clear kink-effect behavior. Furthermore, not only the DC performance including common-source current-voltage characteristics, shift in threshold voltage, output conductance, and gate current but also temperature-dependent behaviors are investigated. High frequency and noise performance were included for further realizing effects of mesa sidewall and annealing process.
Abstract I
Figure Caption
Chapter 1 Introduction 1
Chapter 2 Device Structure and Fabrication for Mesa- and Air- Type In0.5Al0.5As/In0.5Ga0.5As Metamorphic MHEMTs with or without a Buried Gate
2-1 Introduction 3
2-2 Metal growth 3
2-3 Device fabrication 4
2-3-1 Sample orienting
2-3-2 Mesa isolation
2-3-3 Drain and source ohmic contact formation
2-3-4 Cap layer removing and gate schottky contact formation
2-3-5 Air-bridge
2-3-6 Buried gate
Chapter 3 Characteristics of Mesa- and Air- Type In0.5Al0.5As/In0.5Ga0.5As Metamorphic HEMTs with or without a Buried Gate
3-1 Introduction 15
3-2 DC performance of In0.5Al0.5As/In0.5Ga0.5As Metamorphic HEMTs 18

3-3-1 Common source
3-3-2 Kink-effect behaviors
3-3-3 Temperature-dependent performance
3-3 RF performance of In0.5Al0.5As/In0.5Ga0.5As Metamorphic HEMTs 34
3-4 Summary 37
Chapter 4 Conclusion and Expectation
4-1 Conclusion 38
4-2 Expectation 39
Reference 40
[1] S. S. Lu and C. C. Hung,“High-current-gain Ga0.51In0.49P/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
[2] W. C. Liu, S. Y. Cheng, W. L. Chang, H. J. Pan, and Y. H. Shie, “Application of δ-doped wide-gap collector structure for high-breakdown and low-offset voltage transistor,” Appl. Phys. Lett., vol. 73, pp.1397-1399, 1998.
[3] W. C. Liu, and W. C. Lour, “An improved heterostructure-emitter bipolar transistor (HEBT),” IEEE Electron Device Lett., vol. 12, pp. 474-476, 1991.
[4] W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp.524-527,2000.
[5] S. W. Tan, H. R. Chen, W. T. Chen, M. K. Hsu, A. H. Lin, and W. S.Lour, “Characterization and modeling of three-terminal heterojunction phototransistors using an InGaP layer for passivation,” IEEE Trans. Electron Device, vol. 52, pp.204-210, 2005.
[6] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric doubleδ-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Device, vol. 41, pp.456-457, 1994.
[7] C. Z. Wu, L. W. Laih, and W. C. Liu, “Study of InGaAs/GaAs metal-insulator-semiconductor-like heterojunction field-effect transistor,” Solid-State Electron, vol. 66, pp.791-795, 1996.
[8] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Thermal-stability improvement of a sulfur-passivated InGaP/InGaAs/GaAs HFET” IEEE Trans,” Electron Device, vol. 6, pp.52-59, 2006.
[9] M. Matloubian, L. M. Jelloian, “V-band high-effeiciency high-power AlInAs/GaInAs/InP HEMT;s,” IEEE Trans. on Microwav Theory and Tech. vol.41, pp. 2206-2210. 1993.
[10] J. H. Lee, H. S. Yoon, C. S. Park, and H. M. Park, “Ultra low noise characteristics of AlGaAs/InGaGs/GaAs pseudomorphic HEMT’s with wide head T-shaped gate,” IEEE Electron Device Lett., vol. 16, no. 6, pp. 271-273.1995.
[11] K. C. Lin, Y. M.Hsin, C. Y. Chang, and E, Y, Chang, “A pseudomorphic GaInP/InP MESFET with improved device performance,” IEEE Trans. Electron Device, vol. 40, pp.2361-2362, 1993.
[12] Y. S. Lin, T. P. Sun, and S. S. Lu, “Ga0.51In0.49P/In0.15Ga0.85As/GaAs pseudomorphic doped-channel FET with high-current density and high-breakdown voltage,” IEEE Electron Device Lett., vol. 18, pp.150-153, 1997.
[13] J. H. Tsai, K. P. Zhu, Y. C. Chu and S. Y. Chiu, “InGaP/InGaAs/GaAs camel-gate p-channel pseudomorphic modulation-doped field effect transistor,” IEEE Electronics Lett., vol. 39, 2003.
[14] C. S. Wu, Y. J. Chan, J. L. Shien and J. I.Chyi, “In0.52(Al0.9Ga0.1)0.48As/In0.53Ga0.47As HEMT with improved device reliability,” IEEE Electrons Lett., vol. 31, pp.1105-1106, 1995.
[15] C. K. Lin, W. K. Wang, Y. J. Chan, and H. K. Chiou, “BCB-bridged distributed wideband SPST switch using 0.25-�慆 In0.5Al0.5As-In0.5Ga0.5As metamorphic HEMTs,” IEEE Trans. Electron Devices, vol.52, pp.1-5, 2005.
[16] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in ��-doped In0.425Al0.575As-In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Lett., vol.26, pp.59-61, 2005.
[17] Y. Cordier, M. Zaknoune, S. trassaert, and J. M. Chauveau,“Stacking of metamorphic InAlAs/InGaAs heterostructures on GaAs substrate,” J. Appl. Phys., vol.90, pp.5774-5777, 2001.

[18] S. J. Jo, S. G. Ihn, J. I. Song, K. J. Yee, and D. H. Lee, “Carrier dynamics of low-temperature-grown In0.53Ga0.47As on GaAs using an InGaAlAs metamorphic buffer,” Appl. Phys. Lett., vol.86, pp.111903, 2005.
[19] H.R. Chen, M.Y. Wu, W.S. Lour, G.L. Hung, and Y.M. Shih, “Direct current and alternating current performance in InGaP/InxGa1-xAs FETs using airbridge gate with multiple piers, “ Semicond. Sci. & Technol., vol.14, pp.312-317, 1999.
[20] C. Nguyen and M. Micovic,“The state-of-the-at of GaAs and InP power devices and amplifiers,” IEEE Trans. Electron Devices, vol.48, pp.472-478, 2001.
[21] H. Happy, S. Bollaert, H. foure, and A. Cappy, “Numerical analysis of device performance of metamorphic InyAl1-yAs/InxGa1-xAs (0.3 ≤ x ≤ 0.6) HEMT’s on GaAs substrate,” IEEE Trans. Electron Devices, vol.45, pp.2089-2095, 1998.
[22] D. C. Dumka, H. Q. Tserng, M. Y. Kao, E. A. Beam, and P. Saunier, “High-performance double-recessed enhancement-mode metamorphic HEMTs on 4-In GaAs substrates,” IEEE Electron Device Lett., vol.24, pp.135-137, 2003.
[23] C. K. Lin, J. C. Wu, W. K. Wang, Y. J. Chan, J. S. Wu, Y. C. Pan, C. C. Tsai, and J. T. Lai, “Performance enhancement by the In0.65Ga0.35As pseudomorphic channel on the In0.5Al0.5As metamorphic buffer layer,” IEEE Trans. Electron Devices, vol.51, pp.1214-1217, 2004.
[24] Y. J. Chen, W. C. Hsu, C. S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., vol.85, pp.5087-5089, 2004.
[25] M. Behet, K. van der Zanden, G. Borghs, and A. Behres, “Metamorphic InGaAs/InAlAs quantum well structures grown on GaAs substrates for high electron mobility transistor applications,” Appl. Phys. Lett., vol.73, pp.2760-2762, 1998.


[26] J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, K. L. Kavanagh, “ Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett.,vol.60, pp.1129-1131, 1992.
[27] Y. Cordier, M. Zaknoune, S. trassaert, and J. M. Chauveau, J.,“Stacking of metamorphic InAlAs/InGaAs heterostructures on GaAs substrate,” Appl. Phys., vol. 90, pp. 5774-5777, 2001.
[28] W. Contrata and N. Iwata,“Double-doped In0.35Al0.65As/In0.35Ga0.65As power heterojunction FET on GaAs substrated with 1 W output power,” IEEE Electron Device Lett., vol.20, no.7, pp.369-371, Jul. 1999.
[29] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, and H. Tokuda, “InAlAs/InGaAs metamorphic low-noise HEMT,” IEEE Microwave & Guided Wave Lett., vol.7, pp.6-8, 1997.
[30] N. Harada, S. Kuroda, T. Katakami, K. Hikosaka, T. Mimura, and M. Abe, “Pt-based gate enhancement-mode InAlAs/InGaAs HEMT’s for large-scale integration,” in Proc. 3rd Int. Conf. InP and Related Materials, pp.377-380., 1991
[31] A. Fricke, G. Stareec. T. Kummetz, D. Sowada, J. Mahnss, W. Kowalsk, and K. J. Ebeling, “1.09-eV Schottkty barrier height of nearly ideal Pt/Au contacts directly deposited on n- and p+n-Al0.48In0.52As layers,” Appl. Phys. Lett., vol.65, pp.755-757, 1994.
[32] A. Mahajan, J. Arafa, p. Fay, C. Caneau, and I. Adesida, “0.3-�慆 gate-length enhancement-mode InAlAs/InGaAs/Inp high-electron mobility transistor,” IEEE Electron Device Lett., vol.18, no.6, pp.284-286, Jun, 1997.
[33] D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Cueva, and I. Adesida, “High performance 0.35 �慆 gate-length monolithic enhancement/depletion-mode metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrates,” IEEE Electron Device Lett., vol.22, pp.364-366, 2001.


[34] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in ��-doped In0.425Al0.575As-In0.65Ga0.35As metamorphic HEMT,“ IEEE Electron Device Lett., vol.26, pp.59-61, 2005.
[35] L. J. Cui, Y. P. Zeng, B. Q. Wang, J. Wu, Z. P. Zhu, and L. Y. Lin, “Rapid thermal annealing effects on step-graded InAlAs buffer layer and In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor structures on GaAs substrates,” J. Appl. Phys., vol.91, pp.2429-2432, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 吳清山(2003)。體驗學習的理念與策略。教師天地,127,14-22。
2. 吳璧純(2000)。社會科高層次思考教學活動中的價值衝突與化解之道。教育研究月刊,75,53-65。
3. 林淑惠(2003)。體驗學習在國民小學教學上的應用。教師天地,127,51-53。
4. 施郁芬、陳如琇(1996)。情境脈絡與學習遷移。教學科技與媒體,29,23-31。
5. 柯啟瑤(2002)。體驗活動的意義和重要性。翰林文教雜誌,20。
6. 秦葆琦(2003)。九年一貫新課程鄉土教育的革新與因應之道—社會領域四下個版本之鄉土單元分析。研習資訊,20(2),77-91。
7. 張德聰(2003)。體驗學習模式之一-神奇的探索(歷奇)教育。教師天地,127,26-33。
8. 張輝道(2003)。生命教育體驗活動融入班級經營之具體方案。學生輔導,89,112-121。
9. 陳君健(2003)。一同去郊遊-「仙跡岩之旅」教學分享。教師天地,127,46-50。
10. 陳崇文(2003)。體驗學習的最佳代言人-談生活科技科教學設計。教師天地,127,38-40。
11. 陳麗華(1998)。美國的社會科課程。教育研究雙月刊,2,44-52。
12. 廖炳煌(2003)。探索教育相關理論淺談-從個人學習到組織學習。教師天地,127,34-37。
13. 歐用生(2002)。快樂學習或安樂死?~體驗學習的批判教育學意涵。課程與教學季刊,5(4),107-124。
14. 蔡居澤(2003)。戶外教育的通用教學模式-經驗學習圈。教師天地,127,23-25。
15. 謝智謀(2003)。另類學習方式-體驗學習。教師天地,127,6-13。