跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯直昀
研究生(外文):CHIH-YUN KE
論文名稱:鈦酸鉛鈣焦電薄膜紅外線陣列高敏度熱影像感測系統之製作研究
論文名稱(外文):A Study Of (Pb,Ca)TiO3 Pyroelectric Thin Film Infrared Array Thermal Image System
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chung-Cheng Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:91
中文關鍵詞:特定偵測率鈦酸鉛鈣殘餘極化量矯頑電場焦電係數電壓感度
外文關鍵詞:specific detectivityPb0.7Ca0.3TiO3remanent polarizationcoercive electric fieldpyroelectric coefficientvoltage response
相關次數:
  • 被引用被引用:3
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
本實驗以射頻磁控濺鍍法沈積呈焦電中性之鈣鈦酸鉛( Pb0.3Ca0.7TiO3, PCT )薄膜於矽基板上,同時製作積體化之焦電式薄膜紅外線影像感測元件。並且以兩種不同結構,來製作積體化之焦電式薄膜紅外線影像感測元件並且比較相關特性量測結果。利用蝕刻技術提昇元件響應特性,且並依此技術製作焦電式紅外線陣列感測器,並以此元件進行熱影像之量測與分析。
在鈣鈦酸鉛薄膜方面,經由焦電係數、最大偵測率及XRD繞射等實驗得知,鈣鈦酸鉛薄膜為鈣鈦礦的結構及退火溫度在650度15分鐘時,特性較佳。特性測量方面,其一對一電極式結構殘餘極化量為2.67 C/m2和矯頑電場為3.75×106 V/m2。而交錯電極式結構殘餘極化量為5.34 C/m2和矯頑電場為1.5×106 V/m2。焦電係數在200℃各為9.26×10-4 C/m2K及18.99×10-4 C/m2K。因結構上的相異,測得出交錯電極式結構焦電係數較高,且在相同感測面積範圍內,元件擴充數量交錯電極式也來得佳。
在元件特性方面,在單一感測器,於6.4Hz頻率可得最大感測元件電壓感度,一對一電極式結構為383V/W,交錯電極式結構622V/W。元件最大特定偵測率各為1.278 105 cmHz1/2W-1及2.149 105 cmHz1/2W-1。
利用以上的結果,我們製作完成二維16 × 16 的焦電式紅外線影像感測元件,同時探討兩種不同結構感測器所形成之陣列其熱影像感測優缺點並比較分析之。
The experiment deposits the Pb0.3Ca0.7TiO3, PCT film which is burnt electronic neutrality to the silicon base plate based on the Radio-Frequency Sputtering System, at the same time, produces burnt electronic film infrared image sense modules. And produces burnt electronic film infrared image sense modules based on two different structures and compares the measure result of relative speciality. Use etch technology to improve the response speciality of the modules, and produce burnt electronic infrared array sensor depending on this technology, then measure and analyze the heated image of the module.
At the aspect of PCT, according to the experiments of the burnt electronic coefficient, maximize sense ratio and XRD diffract, it is known that speciality is better when PCT film is perovskite structure and the anneal temperature is 650℃ and time is 15 minutes. At the aspect of speciality measure, the staggered electrode structure resist polarize mete is 2.67 C/m2 and the coercive electric field is 3.75×106 V/m2. its one-to-one electrode structure resist polarize mete is 5.34 C/m2 and the coercive electric field is 1.5×106 V/m2. Burnt coefficient at the temperature of 200℃ each is 9.26×10-4 C/m2K and 18.99×10-4 C/m2K. Because of the difference of structures, the burnt coefficient of staggered electrode structure is higher, and at the same scope of sense area, the expansion of staggered electrode module number will be better.
At the aspect of module speciality, the single sensor can obtain maximized sense module voltage sensitivity at the frequency of 6.4 Hz, the one-to-one electrode structure is 383 V/W and the staggered electrode structure is 622 V/W. Each maximized specific detectivity is 1.278 105 cmHz1/2W-1 and 2.149 105 cmHz1/2W-1.
According to the above results, we produced the module of burnt electronic infrared image sense which is two dimensions 16 × 16, at the same time, we discussed, compared and analyzed the merits and faults of array heated images sense which are generated by two sensors of different structures.
Chapter 1 preface…………………………………..…………………..1
Chapter 2 Fundamental Principle of the Pyroelectric Infrared Image Sensor………………………………………………………5
2-1 Systematic introduction on the material of infrared sensor..…5
2-2 Ferroelectric materials………………………………..……….5
2-3 Calcium titanium structure……………………………..……..7
2-4 Pyroelectric Material…………………………………..……...7
2-5 Pyroelectric Phenmena………………………………..………8
2-6 Brief Introduction of Calcium-Modified Lead Titanate, PCT.10
2-7 The coefficient of PCT infrared sense and inspective components system…………………………………………...12
2-7.1 Voltage responsivity and Current responsivity……..…...12
2-7.2 Noises………………………………………………..…..14
2-7.3 Noise equivalent power (NEP) and Specific detectivity (D*)……………………………………………………….16
2-7.4 Merit of Figures………………………..………………...17
Chapter 3 The produce method of film and the steps of producing component………………………………..………………...18
3-1 The steps of producing film………………………………….18
3-1.1 Anneal process………………………………………..…18
3-2 The produce process of infrared burnt electronic film sensor..19
3-2.1 The produce flow of component………………..……….19
3-2.2 Produce floating structure………………………..……...20

Chapter 4 The specialty analysis of material component....................22
4-1 The analysis of film surface’s micro-structure……………..….22
4-2 The analysis of film’s crystallized direction………………..….23
4-3 The analysis of film’s depth………………………………...….24
4-4 Measure result of electric property………………………….....24
4-4.1 The analysis of PCT film’s dielectric constant and dielectric loss……..…………………………………………….…....24
4-4.2 The speciality analysis of P- E curve at 0.3KHz………….25
4-4.3 The measure of burnt electronic coefficient…………...….26
4-4.4 The analysis of PCT film sense component’s merit figure…………………………………………………...…27
4-5 The speciality measurement of pyroelectric thin film sensor.....28
4-5.1 Voltage response………………………………………..…28
4-5.2 The relation between noise voltage and frequency……..…28
4-5.3 Equivalent noise power…………………………………....29
4-5.4 Sense ratio………………………………………………....29
4-5.5 Naturalized sense ratio………………………………….....29
Chapter 5 Application of fabricated pyroelectric infrared ray sensor…………………………………………………...….31
5-1 Introduction…………………………………………………….31
5-2 Experiment process…………………………………………….31
5-2.1 One-to-one electrode structure………………………….....32
5-2.2 Stagger electrode structure……………………………..….33
5-3 Result and discussion…………………………………………..33
Chapter 6 Conclusion……………………………………………………..35
[1] T. Evans, S. Sun, J. Ruffner, P. Clem, “ Proceedings of ISAF 2000: Aerogel Isolated Pyroelectric IR Detector ”, Sandia National Laboratories, Volume 1,21 July-2 Aug 2000.
[2] Yamaguchi, A.; Ogawa, M.; Tamura, T.; Togawa, T, “ Monitoring behavior in the home using positioning sensors ”, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No 4, 1998.
[3] Bluzer, N.; Forrester, M.G, “Quantum detectors in superconducting YBCO ”, IEEE Transactions on Applied Superconductivity, Vol. 5, No. 2, June 1995.
[4] Eldar, Y.C.; Megretski, A.; Verghese, G.C, “ Designing Optimal Quantum Detectors Via Semidefinite Programming ”, IEEE Transactions on information theory, Vol. 49, No. 4, April 2003.
[5] Wen-Yaw Chung; Tai-Ping Sun; Yung-Lung Chin; Yuan-Liang Kao, “Design of pyroelectric IR readout circuit based on LiTaO3 detectors ”, IEEE International Symposium on ISCAS, Volume 4, 12-15 May 1996.
[6] Seong Jun Kang, Vladimir B. Samoilov, and Yung Sup Yoon, “ Low-Frequency Response of Pyroelectric Sensors ”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 5, September 1998.
[7] Oda, S.; Anzai, M.; Uematsu, S.; Watanabe, K, “ A silicon micromachined flow sensor using thermopiles for heat transfer measurements ”, IEEE Transactions on Instrumentation and Measurement, Volume 52, Issue 4, Aug 2003.
[8] Liu Yueying, Shen Dexin, Zhu Ziqiang, “ The design of adding beat reflective emitter coatings on the cold region of infrared thermopiles ”, Twenty-First International Conference on Thermoelectrics, Page(s) 458 – 462, 25-29 Aug 2002.
[9] Bae, S.Y.; Ki-won Yoon; George, T, “ Fabrication and preliminary test results of BICEP (Background Imaging of Cosmic Extragalactic Polarization) bolometer ”, IEEE International Conference on Micro Electro Mechanical Systems, Page(s):60 – 63, 30 Jan 2005.
[10] Sanchez, S.; Elwenspoek, M, Chengqun Gui, de Nivelle, M.J.M.E, de Vries, R.; de Korte, P.A.J.; Bruijn, M.P.; Wijnbergen, J.J., Michalke, W, Steinbeiss, E, Heidenblut, T, Schwierzi, B, “ A high-Tc superconductor bolometer on a silicon nitride membrane ”, IEEE., Tenth Annual International Workshop on Micro Electro Mechanical Systems, Volume 7, Issue 1, March 1998.
[11] Ming-Cheng Kao, Chih-Ming Wang; Hone-Zern Chen,
Maw-Shung Lee, and Ying-Chung Chen, “ Thickness-Dependent Leakage Current of (Polyvinylidene Fluoride/Lead Titanate) Pyroelectric Detectors ”, IEEE Transactions ok ultrasonics, fekroelectrics and frequency control: Vol. 501, No 8, August 2003.
[12] Kulek, J.; Hilczer, B.; Szczepanska, L, “ Pyroelectric response of TGS-PVDF composites of O-3 connectivity ”, International Symposium on Electrets, Page(s) 937 – 941, 25-30 Sept 1996.
[13] Ahmad, A.; Wheat, T.A.; McDonald, A.G.; Hirsch, M.; Prasad, S.E.; Varma, S.; Gopalan, B.G, “ The influence of dopants on the properties of modified lead calcium titanate ceramics ”, Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, Volume 2, 18-21 Aug 1996.
[14] V.N Leonov, D.P. Butler, Z. Celik-Butler, “dielectric loss and related noise of pyroelectric modified lead titanate arrays ”,Solid-State Electronics, 45 Page(s) 735-741, 10 May 2001.
[15] Jyh-Jier Ho; Fang, Y.K.; Wu, K.H.; Hsieh, W.T.; Chu, C.W.; Huang, C.R.; Ju, M.S.; Chang, C.P, “ A high sensitivity lead-titanate (PbTiO3) pyroelectric thin-film infrared sensor with temperature isolation improvement structure ”, Electron Device Letters, IEEE, Volume 19, Issue 6, June 1998.
[16] Eiso Yamaka, Hirohito Watanabe, Hideki Kimura, “ Structural, ferroelectric, and pyroelectric properties of highly c-axis oriented Pb1-xCaxTiO3 thin film grown by radio-frequency magnetron sputtering ”, J. Vac. Sci. Technol ,vol 6, Oct 1988.
[17] Igreja, R.; Dias, C.J.; Marat-Mendes, J.N, “ The role of
crystallisation process of ferroelectric ceramic gels on the electroactive properties of sol-gel ceramic/polymer composites ”, International Symposium on Electrets, Page(s):631 - 634, 22-24 Sept, 1999.
[18] Fujitsuka, N, Hamaguchi, K, Funabashi, H., Kawasaki, E, Fukada, T, “ Silicon anisotropic etching without attacking aluminum with Si and oxidizing agent dissolved in TMAH solution ”, International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Volume 2, 8-12 June 2003.
[19] Lang, S.B, “ Piezoelectricity, pyroelectricity and ferroelectricity in biomaterials: Speculation on their biological significance ”, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 7, Issue 4, Aug 2000.
[20] Jaffe, H, “ Piezoelectric applications of ferroelectrics ”, IEEE Transactions on Electron Devices, Volume 16, Issue 6, Jun 1969.
[21] Emmerich, R.; Bauer, S.; Ploss, B, “ Pyroelectric effects in PVDF and P(VDF-TrFE) ”, International Symposium on Electrets, Page(s) 466 - 471, 25-27 Sept, 1991.
[22] Sonalee Chopra, Seema Sharma, T.C.Goe1’ and R.G.Mendiratta, “ Dielectric and pyroelectric studies of lead calcium titanate thin films ”, Intemational Conference on Properties and Applications of Dielectric Materials, Nagoya, June 1-5, 2003.
[23] Chewasatn, S.; Milne, S.J.; Pankurddee, N.; Chotimongkol, L, “ Sol-gel synthesis of crack-free thin films of calcium lead titanate ”, Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, Volume 2, 18-21 Aug 1996.
[24] Jianguo Zhu; Dejun Lan; DIngquan Xiao; Guanglong Yu; Xi Yue; Xiaowu Yuan; Jian Cao, “ Investigation of the formation mechanism of perovskite phase in (1-x)PST-xPT ceramics prepared by one-step-sintering-method ”, IEEE International Symposium on Applications of Ferroelectrics, Page(s) 266 - 269, 23-27 Aug 2004.
[25] D. Lacey, S.J. Holder, W.H.A Majid, R. Capan, T. Richardson, “ High pyroelectric sensitivity in alternate layer Langmoir-Blodgett superlattices ”, Materials Science and Engineering, Vol 3, Page(s) 197-203, 1995.
[26] Liang Li, Liangying Zhang, Xi Yao, Bo Li, “ Computer simulation of temperature field of multilayer pyroelectric thin film IR detector ”, Ceramics International, Page(s) 1847-1850, 6 May 2004.
[27] Marin-Franch, P, Tunnicliffe, D.L, Das-Gupta, D.K, “ Pyroelectric properties of the PTCa/PEKK composite transducers ”, Eighth International Conference on Dielectric Materials, Measurements and Applications, Page(s) 386 – 391, 17-21 Sept. 2000.
[28] Wang, C.M.; Chen, Y.C.; Huang, Y.T.; Kao, M.C, “ Calcium modified lead titanate thin films for pyroelectric applications ”, IEEE International Symposium on Applications of Ferroelectrics, Volume 2, 21 July-2 Aug 2000.
[29] Garn, L.; Sharp, “ Pyroelectric Vidicon Target Materials ”, IEEE Components, Packaging, and Manufacturing Technology Society, Volume 10, Issue 4, Dec 1974.
[30] Muno Lee, Seongho Bae, “ Temperature-induced transient noise of pyroelectric thermal detector ”, Optical Engineering, Vol. 39, No. 11, November 2000.
[31] H.J. Weller , D. Setiadi, T.D. Binnie, “ Low-noise charge sensitive readout for pyroelectric sensor arrays using PVDF thin film ”, Sensors and Actuators, vol 85, 2 February 2000.
[32] C.C. Chang, C.S. Tang, “ An Integrated Pyroelectric Infrared Sensor With A PZT Thin Film ”, Sensors and Actuators, vol 65, 11 August 1997.
[33] 郭定隆, “ 懸浮結構應用於紅外線感測器之設計與製作 ”,國立交通大學電子工程學系電子研究所碩士論文, 民國93年.
[34] 朱凱鵬, “ 焦電薄膜紅外線影像感測元件之研究 ”, 國立臺灣海洋大學電機工程學系電機工程所碩士論文, 民國93年.
[35] Ferrari, V, Ghisla, A, Marioli, D,. Taroni, A,. “ Array of PZT pyroelectric thick-film sensors for contactless measurement of XY position ”, IEEE Sensors Journal, Volume 3, Issue 2, April 2003.
[36] Cher Ming Tan; Linggajaya, K.; Er, E.; Chai, V.S. H; “ Effect of BOE etching time on wire bonding quality ”, IEEE Transactions on Components and Packaging Technologies, Volume 22, Issue 4, Dec 1999.
[37] Jae-Hong Jeon, Juhn-Suk Yoo, Cheol-Min Park, Hong-Seok Choi, Min-Koo Han, “ A novel method for a smooth interface at poly-SiOx/SiO 2 by employing selective etching ”, IEEE Electron Device Letters, Volume 21, Issue 4, April 2000.
[38] 陳建州, “ 非等向性蝕刻製程於矽基板之應用:翻鑄模仁與矽基板V型凹槽 ”, 國立中山大學機械工程研究所碩士論文, 民國90年.
[39] Gui-Zhen Yan, Chan, P.C.H, I-Ming Hsing, Sharma. R.K, Sin. J.K.O, “ An improved TMAH Si-etching solution without attacking exposed aluminum ”, The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Page(s) 562 - 567, 23-27 Jan 2000.
[40] Sugiyama, S, Tabata, O, Shimaoka, K, Asahi, R, “ Micromachined sensors using polysilicon sacrificial layer etching technology ”, Electron Devices Meeting, Page(s) 127 - 130, 11-14 Dec 1994.
[41] Liangying Zhang, Tongqing Yang, Xiaoqing Wu, Xi Yao, “ Preparation and behavior of infrared focal plane linear array using
composite ferroelectric film ”, Ceramics International, vol 30, 15 July 2004.
[42] F. M. Pontes, D. S. L. Pontes, E. R. Leite, and E. Longo, “ Influence of Ca concentration on the electric, morphological, and structural properties of .Pb,Ca.TiO3 thin films ”, JOURNAL OF APPLIED PHYSICS, Vol 91, No. 10, 15 May 2002.
[43] Jimenez, R, Calzada, M.L, Mendiola, J, “ Preferred orientation of solution derived (Pb,Ca)TiO3 thin films on SrTiO3 and MgO ”, Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, Page(s) 155 - 158, 24-27 Aug 1998.
[44] I. Bretos, J. Ricote, R. Jim´enez, J. Mendiola, R.J. Jim´enez Riob´oo, M.L. Calzada, “ Crystallisation of Pb1−xCaxTiO3 ferroelectric thin films as a function of the Ca2+ content ”, Journal of the European Ceramic Society, vol 5, 2005.
[45] Sonalee Chopra, Seema Sharma, T.C. Goel, R.G. Mendiratta, “ Structural, dielectric and pyroelectric studies of Pb12XCaXTiO3 thin films ”, Solid State Communications 127, Page(s) 299 - 304, 2003.
[46] Teowee, G, McCarthy, K.C, Alexander, T.P, Bukowski, T.J, Uhlmann, D.R, “ Sol-gel derived Pb1-xCaxTiO3 thin films ”, Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, Volume 1, 18-21 Aug 1996.
[47] de Frutos, J, Lopez, F, Jimenez, B, “ Lead calcium titanate ceramics and integrated optical filters for infrared optical sensors ”, Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics, Page(s) 39 - 42, 30 Aug, 2 Sept, 1992.
[48] Jong Soo Ko, Weiguo Liu, Weiguang Zhu, “ Substrate effects on the properties of the pyroelectric thin film IR detectors ”, Sensors and Actuators A93, Page 117-122, 2001.
[49] Y. Chen, H.L.W. Chan, N.M. Hui, Y.W. Wong, C.L. Choy, “ Response of nanocomposite pyroelectric detectors ”, Sensors and Actuators A69, Page 156-168, 1998.
[50] 洪夢聰, “ 高溫超導與超巨磁阻薄膜成長機制及其紅外線感測之研究 ”, 國立中山大學電機工程學系博士論文, 民國90年.
[51] Akai, D, Hirabayashi, K, Yokawa, M, Sawada, K, Taniguchi, Y, Murashige, S, Nakayama, N, Yamada, T, Murakami, K, Ishida, M, “ Pyroelectric infrared sensors with fast response time and high sensitivity using epitaxial Pb(ZrTi)O/sub 3/ films on epitaxial /spl gamma/-Al/sub 2/O/sub 3//Si substrates ”, International Conference on Solid-State Sensors, Volume 1, 5-9 June 2005.
[52] Ming-Cheng Kao, Chih-Ming Wang, Hone-Zern Chen, Maw-Shung Lee, Ying-Chung Chen, “ Thickness-dependent leakage current of (polyvinylidene fluoride/lead titanate) pyroelectric detectors ”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Volume 50, Issue 8, Aug 2003.
[53] Siegel, D, Garabieta, I, Hollerbach, J, “ An integrated tactile and thermal sensor ”, International Conference on Robotics and Automation, Volume 3, Apr 1986.
[54] Hermansson, W, Breitholtz, B, Zdansky, L.C.G, Andersson, K, Heijkenskjold, L.F, Revsater, R, Sigurd, D, “ A MOS-controlled high-voltage thyristor with low switching losses ”, IEEE Transactions on Electron Devices, Volume 45, Issue 4, April 1998.
[55] Panagiotis Blanas’ and Dilip K. Das-Gupta, “ Composite
Piezoelectric Sensors for Smart Composite StruTtures ”, International Symposium on Electret, Vol 2, Apr 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top