跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝浩鈞
研究生(外文):Hao-Chiun Hsieh
論文名稱:不同鹽度下龍鬚菜和石花菜吸附水中營養鹽及重金屬之研究
論文名稱(外文):Studies on the nutrition and heavy metals absorption of Gracilaria coronopifolia and Gelidium amansii at different salinity
指導教授:鄭學淵鄭學淵引用關係
指導教授(外文):Sha-Yen Cheng
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:93
中文關鍵詞:鹽度龍鬚菜石花菜吸附營養鹽重金屬
外文關鍵詞:salinityGracilaria coronopifoliaGelidium amansiiabsorptionnutritionheavy metals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:472
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
龍鬚菜暴露在鹽度14、24及34 psu以及將石花菜暴露於鹽度34 psu下,探討兩者對水中氨-氮和正磷等營養鹽及銅、鉛、鎘、鋅、鐵及錳等重金屬吸附之影響研究,並做比較。
龍鬚菜在鹽度14、24及34 psu下,水中氨-氮濃度隨著時間的增加而降低,7天後鹽度24 psu下之氨-氮吸收率最高為73.6 %,石花菜在鹽度34 psu下,7天後氨-氮之吸收率為62.3 %,7天後龍鬚菜和石花菜之氨-氮濃度和各鹽度間皆有顯著差異(P<0.05)。龍鬚菜暴露在鹽度14、24及34 psu,水中正磷濃度隨著時間的增加而降低,7天後鹽度14 psu下正磷之吸收率最高為22.8 %,石花菜在鹽度34 psu下,7天後水中正磷之吸收率為6.1 %,7天後龍鬚菜和石花菜之正磷濃度和各鹽度間皆有顯著差異(P<0.05)。龍鬚菜暴露在鹽度14及24 psu下,7天後N:P 比值分別由11.6及28.4下降為7.13及13.5;在鹽度34 psu下,龍鬚菜及石花菜7天後之N:P 比值分別由10.8及23.5增加為17.5及23.6,龍鬚菜各鹽度間之N:P 比值有顯著差異(P<0.05),龍鬚菜和石花菜在鹽度34 psu下,其N:P 比值則無顯著差異(P>0.05)。
龍鬚菜和石花菜水中重金屬濃度7天後均降低,其中龍鬚菜在鹽度14 psu下以鉛、鎘和錳的吸收率分別為88.4 、10.8 和37.8 %最高,在鹽度24 psu下以銅和鐵的吸收率最高分別為68.3 和100 %,在鹽度34 psu下則以鋅的吸收率最高為42.6 %。在鹽度34 psu下龍鬚菜對銅及鐵的吸收率分別為55.8和98.7 %皆高於石花菜,而石花菜對鉛、鎘、鋅及錳的吸收率分別為57.0、12.9、67.3及15.8 %皆高於龍鬚菜,經統計分析結果7天後各重金屬濃度和各鹽度間皆有顯著差異(P<0.05)。
龍鬚菜和石花菜體內重金屬蓄積量隨著天數增加而增加,7天後,銅、鉛、鎘、鋅及錳在鹽度14 psu下龍鬚菜體內蓄積量分別為2.40、1.43、0.27、1.54及0.33 mg/g DW最高,鐵則在鹽度24 psu下龍鬚菜體內蓄積量1.13 mg/g DW最高。7天後,龍鬚菜暴露在鹽度34 psu下,對銅、鉛及鋅蓄積量分別為0.96、0.59及1.04 mg/g DW皆顯著高於石花菜的蓄積量0.73、0.43及0.15 mg/g DW(P<0.05),而石花菜對鎘、鐵及錳的蓄積量分別為0.21、0.70及0.39 mg/g DW皆顯著高於龍鬚菜的蓄積量0.12、0.49及0.16 mg/g DW(P<0.05),經統計分析結果7天後各重金屬蓄積量和各鹽度間皆有顯著差異(P<0.05)。
龍鬚菜和石花菜重金屬濃縮係數皆隨著天數增加而增加,龍鬚菜對重金屬銅、鉛、鋅及鎘之濃縮係數在鹽度14 psu下最高分別為3187、4667、281及31,錳濃縮係數則是在鹽度24 psu下最高為127。在鹽度34 psu下,龍鬚菜各重金屬的濃縮係數皆高於石花菜重金屬的濃縮係數,經統計分析結果7天後各重金屬濃縮係數和各鹽度間皆有顯著差異(P<0.05)。
Abstract
The aimed of this study was to investigate and compare the different degrees of absorption of nutrition (tatol phosphorus and ammonia-N) and heavy metal (cooper, lead, cadmium, zinc, iron and manganese) for Gracilaria coronopifolia and Gelidium amansii when exposed to different salinities of water.
The ammonia-N concentration in the water G. coronopifolia exposed to decreased as the duration of the exposure increased. This applied to salinities of 14, 24 and 34 psu especially for salinity of 24 psu at which the absorption of ammonia-N for G. coronopifolia reached 73.6 % after 7 days of exposure. In the water with salinity of 34 psu, G. amansii could absorb 62.3 % of ammonia-N after 7 days of exposure. There was a significant difference (P<0.05) between salinity and the ammonia-N concentration in G. coronopifolia and G. amansii.
This study showed the similar result on tatol phosphorus absorption. Tatol phosphorus concentration in the water G. coronopifolia exposed to decreased as the duration of the exposure increased. This result applied to salinities of 14, 24 and 34 psu. At salinity of 14 psu, the absorption of tatol phosphorus for G. coronopifolia reached 22.8 % after 7 days of exposure. In the water with salinity of 34 psu, G. amansii could absorb 6.1 % of Tatol phosphorus after 7 days of exposure. There was a significant difference (P<0.05) between salinity and the tatol phosphorus concentration in G.a coronopifolia and G. amansii.
When exposed to salinity of 14 and 24 psu, the N:P ratio of G. coronopifolia decreased from 11.6 and 28.4 to 7.13 and 13.5 respectively. The N:P ratio of G. coronopifolia and G. amansii increased from 10.8 and 23.5 to 17.5 and 23.6 respectively at salinity of 34 psu. There was a significant difference (P<0.05) between N:P ratio of G. coronopifolia and various degrees of salinity but there was no significant difference (P > 0.05) for N:P ratio of G. coronopifolia and G. amansii at salinity of 34 psu.
After 7 days of exposure, the heavy metal concentration in water G. coronopifolia or G. amansii exported to was reduced. G. coronopifolia absorbed copper and iron up to 55.8 and 98.7 %, which are greater than the absorption of G. amansi when salinity is 34 psu. While G. amansii demonstrated the better absorption than G. coronopifolia as it absorbed 57.0, 12.9, 67.3 and 15.8 % of lead, cadmium, zinc and manganese when salinity is 34 psu. The statistics showed that there is a significant difference (P < 0.05) between the heavy mental concentration and salinity.
There was a positive correlation between the days of exposure and heavy metal accumulation in G. coronopifolia and G. amansii. After 7 days of exposure in the water with salinity of 14 psu, G. coronopifolia accumulated copper, lead, cadmium, zinc and manganese at the highest level of 2.40, 1.43, 0.27, 1.54 and 0.33 mg/g Dry Weight respectively. G. coronopifolia accumulated the highest level of iron at 1.13 mg/g when the salinity is 24 psu.
When exposed to salinity of 34 psu, G. coronopifolia accumulated 0.96 mg/g DW of copper, 0.59 mg/g DW of lead, and 1.04 mg/g DW of zinc, significantly exceeding the accumulation in G. amansii which were 0.73 mg/g DW of copper, 0.43 mg/g DW of lead, and 0.15 mg/g DW of zinc (P<0.05). Exported at the same degree of salinity, G. amansii accumulate 0.96 mg/g of cadmium, 0.59 mg/g of iron, and 1.04 mg/g DW of manganese which exceeded the accumulation in G. coronopifolia as 0.12 mg/g DW of cadmium, 0.49 mg/g DW of iron, and 0.16 mg/g DW of manganese. The statistic data showed that there was a significant difference between heavy metal accumulation and salinity (P<0.05).
There was a positive correlation between the days of exposure and heavy metal concentration factor in G. coronopifolia and G. amansii. Heavy metal concentration factor in G. coronopifolia reached the highest level at salinity of 14 psu as the copper concentration factor was 3187, lead concentration factor was 4667, zinc concentration factor was 281, and cadmium concentration factor was 31. As for manganese accumulation, the highest levels were achieved at salinity of 24 psu as manganese concentration factor was 127.
With the same degree of salinity of 34 psu, all heavy metal concentration factors in G. coronopifolia all exceeded those in G. amansii. The statistic data showed that there was a significant difference between heavy metal concentration factor and salinity (P<0.05).
目 錄
第一章 緒言………………………………………………………………1
第二章 文獻整理…………………………………………………………4
圖………………………………………………………………17
第三章 鹽度變化對龍鬚菜吸收營養鹽之影響
摘要……………………………………………………………18
前言……………………………………………………………19
材料與方法…………………………………………………20
結果…………………………………………………………25
討論……………………………………………………………27
表………………………………………………………………33
圖………………………………………………………………34
第四章 鹽度變化對龍鬚菜吸收重金屬之影響
摘要……………………………………………………………39
前言……………………………………………………………40
材料與方法……………………………………………………42
結果……………………………………………………………45
討論……………………………………………………………55
表…………………………………………………………63
圖………………………………………………………………69
第五章 结論……………………………………………………………75
參考文獻……………………………………………………………76
參考文獻
王一雄、陳尊賢、李達源,1995,土壤污染學,國立空中大學。
王銀波、廖乾華,1999,農作物對重金屬的吸收,農作物中重金屬監測基準資料之建立,p.57~60,台灣省農業藥物毒物試驗所 。
王子誠,2003,嘉南平原地下水腐殖物質之含量及其與砷、鐵及錳濃 度之關係:螢光強度研究,國立台灣大學地質科學研究所碩士論文。
左惠文,2004,以人工溼地處理校園污水之功能性探討,嘉南藥理科
技大學環境工程與科學系碩士論文。
林秋榮、陳益明,1991,逆境對植物之生理與分子生物學之研究,科 學發展月刊 19: 222~225。
林明男、丁雲源、曾寶順、林國彥、林建東,1993,利用溶氧控制水
車研究計畫成果報告,臺灣水產試驗所臺南分所。
林青谷,1997,利用水中植物去除廢水中有毒重金屬,國立中山大學海洋環境研究所碩士論文。
邵廣昭,1998,海洋生態學,國立編譯館,明文書局發行,p.340~360。
洪佩瑩,2001,大鵬灣碳及營養鹽之生地化作用及通量,國立中山大學海洋地質及化學研究所碩士論文。
桂德君,2004,環境因素對菊花心種龍鬚菜外表形態碎形維度的影響,國立中山大學海洋生物研究所碩士論文 。
張仁福,1998,土壤污染防治學。高雄復文圖書出版社,p.325~340。
張婉純,1998,龍鬚菜(Gracilaria tenuistipitata)(Gigartinales, Rhofophyta)高溫下游離脯氨酸(free proline)代謝。國立中山大學海洋生物研究所碩士論文。
陳建初,1983,水質分析。九大圖書公司。
陳樂才,1995,魚池的廢氮,中國水產月刊 507,p. 5~14。
陳忠信,1996,龍鬚菜在不同營養狀況下對無機氮之吸收及其於養殖池上之應用,農委會漁業特刊 58,p.257~274。
陳俊明,1999,室內循環水高密度養殖系統之整合、改良與推廣,曹公農業水利研究發展基金會研究報告,p.61。
傅郁文,2005,飼料中添加龍鬚菜與石花菜熱水萃取物增強白蝦免疫力及抗Vibrio alginolyticus感染之研究,國立海洋大學水產養殖學系研究所碩士論文。
黃淑芳,2000,臺灣東北角海藻圖錄,臺灣博物館,台北,p.23~209

黃俊翰,2005,龍鬚菜的養殖與應用,水試專訊 11,p.44~46。
鄭佳慧,2005,台灣地區養殖池重金屬元素之研究,國立臺灣海洋大學海洋環境資訊學系研究所碩士論文。
蔡娟娟,2001,營養鹽與溫度對墾丁南灣大型海藻生物量之影響,國立中山大學海洋生物研究所碩士論文。
賴盈仲,2004,畜殖廢水土壤處理對(i)場址及相鄰環境水質以及(ii)滲漏計土壤性質與水質之影響,國立中興大學土壤環境科學系研究所碩士論文。
Alabaster J.S., Shurben D.G., Mallett M.J.,1983. The acute lethal toxicity of mixtures of cyanide and ammonia to smolts of salmon, Salmo salar L. at low concentrations of dissolved oxygen. J. Fish Biol., 22:215~222.
Amado F.G.M.A., Andrade L.R., Karez C.S., Farina M., Pfeiffer W.C., 1999. Brown algae species as biomonitors of Zn and Cd at Sepetiba Bay, Rio de Janeiro, Brazil. Mar. Environ. Res., 48:213~224.
Aziz K. , Abdelkrim M. , Abdelkbir S., 2004. Biologie et pathologie végétales / Plant biology and pathology Variations saisonnières des teneurs en métaux (Cd, Cu, Fe, Mn et Zn) chez l’algue Ulva lactuca prélevée au niveau du littoral de la ville d’El Jadida (Maroc), C. R. Biol., 327:361~369.
Barber J., 1968. The efflux of potassium from Chlorella pyrenoidosa. Biochim. Biophys. Acta., 163:531-8.
Bird C.J., McLachlan J., 1986. The effect of salinity on distribution of species of Gracilaria: an experimental assessment. Bot. Mar. 29:231~238.
Bird K. T., Habingand C., DeBusk T., 1982. Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J. Phycol., 18:344~348.
Bird N.L., Chen L.C.-M., McLachlan J., 1979. Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae and Fucus serratus. Bot. Mar., 22:521~527.
Boaden P. J. S., Seed R., 1985. An introduction to coastal ecology. B. Acad. Prof., New York., pp:80
Boiler M., 1997. Tracking heavy metals reveals sustainability deficits of urban drainage systems. Water Sci. Technol., 35 (9):77~87.
Bragazza L., Tahvanainen T., Kutnar L., 2004. Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol., 163:609~616.
Brouwer E., Backx H., Roelofs J.G.M., 2001. Nutrient requirements of ephemeral plant species from wet, mesotrophic soils. J. Veget. Sci., 12, 319–326.
Bryan G.W., Hummerstone L.G., 1973. Brown seaweed as an indicator of heavy metals in estuaries in south-west England. J. Mar. Bio. Ass. of the U. K., 53:705~720.
Burford M.A., Thompsona P.J., McIntosh R. P., Baumanb R. H., Pearsonc, D. C., 2003. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219:393~411.
Burford M.A., Williams K.C., 2001. The fate of nitrogenous waste from shrimp feeding. Aquaculture, 198:79~93.
Caliceti M., Argese E., Sfriso A., Pavoni B., 2002. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere, 47 :443~454.
Calybrook D. L., 1983. Nitrogen metabolism. Internal Anatomy and Physiological Regulation. In: Mantel, L.H. (ed.), The biology of Crustacean. Vol. 5. Academic Press. N.Y., 5:163-213.
Carlson L, Erlandson B.,1991. Effects of salinity on the uptake of radionuclides by Focus uesiculosus L. J. Environ. Radioact., 1991, 13:309~322.
Chien Y.H., 1992. Water quality requirement and management for marine shrimp culture. In: Wyban, J.(Ed.), Proceedings of the Special Session on Shrimp Farming. World Aquacul. Soc., Baton Rouge, LA, USA, pp:144~156.
Chiffoleau J.F.,Cossa D., Auger D., Truquet I., 1994.Trace metal distribution, partition and fluxes in the Seine estuary(France)in low discharge regime. Mar. Chem.,(47):145~158.
Coelho J.P., Pereira M.E. , Duarte A. , Pardal M.A., 2005.Macroalgae response to a mercury contamination gradient in a temperate coastal lagoon (Ria de Aveiro, Portugal). Estuarine., Coast. Shell Sci., (65) :492~500.
Codispoti L.A., 1989. Phosphorus vs. nitrogen limitation of new and export production. In: Berger, W.H., Smetacek, V.S.,Wefer, G. (Eds.), Productivity of the Ocean: Present and Past.Wiley, pp: 377~ 394.
Colt J.E., Armstrong D.A., 1981.Nitrogen toxicity to crustaceans, fish, and molluscs. In: Proceedings of the bio-engineering symposium for fish culture.L.J. Alien and E.C. Kinney (eds), Fish Culture Section of the American Fisheries Society, Bethesda, Maryland, USA, pp:34~47
Crist R.H., Oberholser K., Schwartz D., Marzoff J., Ryder D.,1988.Interactions of metals and protons with algae. Environ. Sci.Technol. 22, 755-760.
Daka E.R., Allen J.R., Hawkins S.J., 2003. Heavy metal contamination in sediment and biomonitors from sites around the Isle of Man. Mar. Pollut. Bull. 46:784~794.
De Filippis L. F. 1979. The effect of heavy metal compounds on the permeability of Chlorella cells. Z. Pflanzenphysiol., 92: 9~39.
D'Elia C.F., DeBoer, J.A., 1978. Nutritional studies of two red algae:II. Kinetics of ammonium and nitrate uptake. J. Phycol., 14:266~272.
Duarte C. M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia., 41:87~112.
Duncan D. E., 1955. Mutiple-range and multiple F test. Biometrics, 11:1~42.
Evans D.W., Cutshall N.H., Cross F.A., Wolfe D.A., 1977. Manganese cycling in the Newport River Estuary, North Carolina.Estuarine,Coast. Mar. Sci.,5:71~80.
Falkowski P.G., Raven J.A., 1997. Aquatic Photosynthesis. Blackwell Sci., Oxford, pp:375.
Fei X.G., 2004. Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia, 512:145~151.
Figueres G., Martin J.M., Meybeck M., 1978.Iron behaviour in the Zaire estuary, Neth.J.Sea Res., 12:329~337.
Fjällborg B., Dave G., 2003,“Toxicity of copper in sewage sludge.Environ. Int., 28:761~769.
Förstner U., 1979. Metal transfer between solid and aqueous phases.In: Förstner, U., Wittman, G.T.W. (Eds.), Metal Pollut. in the Aquatic Environ., Springer-Verlag, Berlin, pp:197~270.
Foster P., 1976. Concentrations and concentration factors of heavy metals in brown algae. Environ. Pollut. 10:45~53.
Fourest E., Volesky B., 1997, Alginate properties and heavy metal biosorption by marine algae [J] .Appl Biochem. Biotech., 63(3) :215~226.
Fujita R. M., Wheeler P. A., Edwards R. L., 1989. Assesment of macroalgal nitrogen limitation in seasonal upwelling regions. Mar. Ecol. Prog. Ser., 53: 293~303.
Fytianos K., Evgenidou E., Zachariadis G., 1999. Use of macroalgae as biological indicators of heavy metal pollution in Thermaikos Gulf, Greece. Bull. Environ. Contam. Toxicol., 62: 630~637.
Ganesan M., Kannan R., Rajendran K., 1991. Trace metals distribution in seaweeds of the Gulf of Mannar, Bay of Bengal. Mar. Pollut. Bull. 22: 205~207.
Garcia-Sanchez M. J., Fernandez J. A., Niell F. X., 1996. Photosynthetic response of P-deficient Gracilaria tenuistipitata under two different phosphate treatments. Physiol. Plant., 96: 601~606.
Gillor O., Hadas O., Post A. F., Gelrin S., 2002. Phosphorus bioavailability monitoring by a bioluminescent cyanobacterial sensor strain. J. Phycol., 38:107~115.
Gonzalez-Davila M., Santana-Casiano J.M., Perez-Pena J., Millero F.J., 1995. Binding of Cu(II) to the surface and exudates of the alga Dunaliella tertioiecta in sweater. Environ. Sci. Technol.,29:289~301.
Greenaway P., 1991. Nitrogenous excretion in aquatic and terrestrial Crustacea. Mem. Queensland Mus., 31:215~227.
Greger M., Kautsky L., Sandberg T., 1995. A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity. Environ. Exp. Bot., 35 (2):215~225.
Grill E., Winnacker, E. and Zenk, M. H.,1985. Phytochelatins:The Principal Heavy-Metal Complexing Peptides of Higher Plants. Sci., 230:674~676.
Grill E., 1987. Phytochelatins, the heavy metal binding peptides of plants: characterizationand sequence determination. Exper. Suppl., 52: 317~322
Haglund K., M. Pedersen., 1993. Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake,co-cultivation with rainbow trout and epiphyte control. J. Appl. Phycol., 5:271~284.
Harlin M.M., 1978. Nitrate uptake by Enteromorpha spp. (Chlorophyceae): applications to aquaculture systems. Aquaculture, 15:373~376.
Harada H., Noro T., Kamei Y., 1997. Selectivity antitumor activity in vitro from marine algae form Japan coasts. Biol. Pharm. Bull., 20(5):541~546.
Hope A.B., Walker N.A., 1975. The Physiology of Giant Algal Cells, Cambridge Univ. Press, Cambridge, UK.
Horrocks J. L., Stewart G. R., Dennison W. C., 1995. Tissue nutrient contentof Gracilaria spp. (Rhodophyta) and water quality along an estuarinegradient. Mar. Freshwater Res., 46: 975~983.
Hou W.Y., Chen J.C., 2005. The immunostimulatory effect of hot-water extract of Gracilaria tenuistipitata on the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol., 19: 127~138.
Howarth, R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev.Ecol., 19:89~110.
Huang J.P., Huang C.P., Morehart A.L., 1991. The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisae. Water Res., 24:433~499.
Jones A. B., Preston N. P., Dennison W. C., 2002. The efficiency and condition of oysters and macroalgae used as biological filters of shrimp pond effluent. Aquacul. Res., 33:1~19.
Justic D., Rabalais N. N., Turner R. E., 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull., 30(1): 41~46.
Kinne O., 1963. The effect of temperature and salinity on marine and brackish water animals. I. Temperature. Oceanogr. Mar. Biol. Annu.Rev., 1: 301~340.
Kishor K., Delauney A. I., Hu C. A. A., Szoke A. and Verma D. P. S.,
1993. Regulation of proline biosynthesis genes under high and low nitrogen input and the role of Ornthine aminotrasferase in this pathway. Plant Physiol., p:102~126.
Knox S., Turner D.R., Dickson A.G., Liddicoat M.I., Whitfield M., Butler E.I., 1981.Statistical analysis of estuarine profiles:Application to manganese and ammonium in the Tamar Estuary.Estuarine, Coast. shelf Sci., 12: 629~643.
Kuenzler E. J. 1970. Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol., 6:7~13.
Langston W.J., 1990. Toxic effects of metals and the incidence of metal pollution in marine ecosystems. In: Furness, R.W., Rainbow, P.S. (Eds.),Heavy Metals in the Mari. Environ.CRC Press. Inc., Boca Raton, Florida, pp:101~121.
Lee J.A., Caporn S.J.M., 1998. Ecological effects of atmospheric reactive nitrogen deposition on semi-natural terrestrial ecosystems. New Phytolo., 139:127~134.
Levine H.G., 1984. The use of seaweeds for monitoring coastal waters. Algae as Ecological Indicators. Academic Press, London.
Lin H. J., Nixon S.W., Taylor D.I., Granger S.L., Buckley B.A., 1996. Responses of epiphytes on eelgrass, Zostera marina L., to separate and combined nitrogen and phosphorus enrichment. Aquat. Bot., 52:243~258.
Liss P.S., 1976. Conservative and non-conservative behaviour of dissolved constituents during estuarine mixing. In : Estuarine Chemistry, eds., J.D. Burton and P.S. Liss, Academic Press, London, UK, pp:93~130.
Lobban C.S., Harrison P.J., 1994. Seaweed Ecology and Physiology.Cambridge University Press, New York.
Lobban C.S., Harrison P.J., 1997. Seaweed Ecology and Physiology. Cambridge Univ. Press, Cambridge, NJ., pp:366.
Malea P., Haritonidis S., 1999. Seasonal accumulation of metals by red alga Gracilaria verrucosa (Hud.) Papenf. From Thermaikos Gulf, Greece. J. Appl. Phycol., 11:503~509.
Matherical J.T., Yu Q., 1996.Biosorption of lead from aqueous solution by marine algae Ecklonia radiata.Water Sci. Techno., 34:1~7.
Martin J.H., Fitzwater S.E., 1988. Iron deficiency limits phytoplankton growth in north-east Pacific. Nature 331, 341-343.Morris, J. 1974. Nitrogen assimilation and protein synthesis. In (Stewart,W.D.P.ed). Algal Physiology and Biochemistry. University of California Press.Berkelley and Los Angeles, pp: 583~609.
Morrison G.M.P., 1989. Bioavailable metal uptake rate in urban stormwater determined by dialysis with receiving resins. Hydrobiologia 176/177:491~495.
Munda I.M., Hudnik V., 1988. The effects of Zn, Mn, and Co accumulation on growth and chemical composition of Fucus vesiculosus L. under different temperature and salinity conditions. Mar. Ecol., 9 (3): 213~225.
Muse J.O. , Carducci C.N., Stripeikis J.D., Tudino M.B., Ferna´ndez F.M., 2006. A link between lead and cadmium kinetic speciation in seawater and accumulation by the green alga Ulva lactuca. Environ. Pollut. 141 (2006):126~130
Naldi M., Wheeler P. A., 1999. Changes in nitrogen pools in Ulva fenestrata(Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. J. Phycol. 35: 70~77.
Naldi M., Wheeler P. A., 2002. 15N measurements of ammonium and nitrate uptake by Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta): comparison of net nutrient disappearance,release of ammonium and nitrate, and 15N accumulation in algal tissue. J. Phycol. 38:135~144.
Neori A., Chopin T., Troell M., Buschmann, A.H., Kraemer,G.P., Halling, C., Shpigel, M., Yarish, C., 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231:361~391.
Noraho N., Gaur, J.P., 1995. Effect of cations, including heavy metals on cadmium uptake by Lemna polyrhiza L. Biometals, 8:95~98.
Olguin E.J., 2003. Phycoremediation: key issue for cost-effective nutrient removal process. Biotechnol. Adv., 22: 81~91.
Ooi L. S. M., H. Wang, T. B. Ng and V. E. C. Ooi (1998) Isolation and characterization of a mannose-binding lectin from leaves of the Chinese daffodil Narcissus tazetta. Biochem. Cell Biol., 76: 601~608.
Pettersson T.J.R., German J., Svensson G., 1999. Pollutant removal efficiency in two stormwater ponds in Sweden. In: Proceedings of the Eighth International Conference on Urban Storm Drainage, Sydney, Australia, 30 August–3 September 1999, vol. 2, pp: 866~873.
Phillips D.J.H., 1977. Effects of salinity on the net uptake of zinc by the common mussel Mytilus edulis. Mar. Biol., 41:79~88.
Phillips D.J.H., 1994. Macrophytes as biomonitors of trace metals. In:Kramer, K.J.M. (Ed.), Biomonitoring of Coastal Waters and Estuaries. CRC Press, Boca Raton, FL, pp:85~103.
Pitcairn C.E.R., Fowler D., 1995. Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environ. Pollut. 88:193~205.
Rai L.C., Gaur J.P., Kumar H.D., 1981. Phycology and heavy-metal pollution. Biol. Rev., 56: 99~151.
Raven J.A., 1988. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol., 109:279~287.
Raven J. A., Wollenweber B., Handley L. L., 1993. The quan-titative role of ammonia/ammonium transport and meta-bolism by plants in the global nitrogen cycle. Physiol. Plant., 89:512.
Raven J. A., Evans, M. C. W., Korb, R. E., 1999. The role of trace metals in photosynthetic electron transport in Og-evolving or-ganisms. Photosyn. Res., 60: 49~111.
Regnault M., 1987. Nitrogen excretion in marine and freshwater crustacean. Biol. Rev., 62:1~24.
Ritchie R. J., 1988. The ionic relations of Ulva lactuca [J] . J. Plant Physiol., 133:183~192.
Robbins J.V., 1978. Effects of physical and chemical factors on photosynthetic and respirator rates of Palmaria palmata (Florideaophyceae). In: Jensen, A., Stein, J. (Eds.), Proceedings of the 9th International Seaweed Symposium. Santa Barbara, California. Science Press, Cambridge, NJ, pp:273~283.
Rosenberg G., Ramus J., 1982. Ecological growth strategies in the seaweeds Gracilaria foliifera (arhodophyceae ) and Ulva sp.(Chlorophycea ) : soluble nitrogen and reserve carbohydrates. Mar. Biol., 66: 251~259.
Ryther J.H., Corwin N., DeBusk T.A., Williams L.D., 1981. Nitrogen uptake and storage by the red alage Gracilaria tikvahiae (McLachlan, 1979). Aquaculture,26:107~115.
Sadler K., 1981. The toxicity of ammonia to the European eel (Anguilla anguilla L.). Aquaculture, 26: 173~181.
Sansalone J.J., Buchberger S.G., Al-Abed S.R., 1996. Fractionation of heavy metals in pavement runoff. Sci. Total Environ., 189/190:371~378.
Sauve S., McBride M. B., Hendershot W. H., 1997. Ion activity and solubility of lead in contaminated soils. p.279-280. In I. K. Iskandar, S. E. Hardy, A. C. Chang, and G. M. Pierzynski (ed.) Proceedings of extended abstracts from the fourth international conference on the biogeochemistry of trace elements. June 23-26, 1997. Clark Kerr Camps, Berkeley.
Sfriso A., Marcomini A., Pavoni B., 1987. Relationships between macroalgal biomass and nutrient concentrations in a hypertrophic area of the Venice Lagoon Italy. Mar. Environ. Res., 22 (4): 297~312.
Sheng P.X., Chen Y.-P., Paul J., Liang H., Colloid J.,2004. Interface Sci.,275:131.
Silvia F., Sebastian P. A., Cristian V., Patricia S., 2002. Levels of essential and potentially toxic trace metals in Antarctic macro algae,Spectrochimica Acta., Part B 57:2133~2140.
Sohacki L. P., Ball R. C., Hooper F. F., 1969. Some ecological changes in ponds from sodium arsenite and copper sulfate, Mich. Acad. Sci., 1:149~162.
Sousa C., Kotrba P., Ruml T., Cebolla A., De Lorenzo V., 1998. Metalladsorption by Escherichia coli Cells Displaying Yeastand Mammalian Metallothioneins Anchored to the Outer Membrane Protein LamB. J. Bacteriol., 180:2280~2284
Sousa-Pinto I., R. Lewis, M. Polne-Fuller., 1996. The effect of phosphate concentration on growth and argar content of Gelidium robustum (Gelidiaceae, Rhodophyta) in culture.Hydrobiologia, 326/327: 437~443
Sunda E., Guillard R.L., 1976 , The relationship between cupric ion activity and the toxicity of coppe to phytoplankton[J] . J. Mar. Res., 34 :511~529.
Tappin A.D., Millward G.E., Statham P.J., Burton J.D., Morris A.W., 1995.Trace metals in the central and southern North Sea. Estuarine, Coast. Shelf Sci., 41:275~323.
Troell M., Kautsky N., Folke C., 1999. Applicability of integrated coastal aquaculture systems. Ocean Coast. Manag., 42:63~69.
Turner A., Millward G.E., Bale A.J., Morris A.W., 1993. Application of the KD concept to the study of trace metal removal and desorption during estuarine mixing. Estuarine, Coast. Shelf Sci., 36: 1~13.
Thurston R.V., Phillips G.R., Russo R.C., 1981. Increased toxicity of ammonia to rainbow trout (Salmo gairdneri) resulting from reduced concentrations of dissolved oxygen. Can. J. Fish. Aquat. Sci., 38:983~989.
Umezawa Y., Miyajima T., Yamamuro M., Kayanne H., Koike I., 2002. Fine-scale mapping of land-derived nitrogen in coral reefs by δ15N in macroalgae. Limnol. Oceanogr., 47:1405~1416.
Valiela I.,1995. Marine Ecological Processes, 2nd ed. Springer-Verlag, New York, pp:546.
Valiela I., Collins G., Kremer J., Lajtha K., Geist M., Seely B., Brawley J., Sham C. H., 1997. Nitrogen loading from coastalwatersheds to receiving estuaries: mew method and application. Ecol. Appli., 7:358~380.
Valls M., De Lorenzo V., Gonzalez-Duarte, R., Atrian S., 2000. Engineering outer-membrane proteins in pseudomonas putida for enhanced heavy-metal bioadsorption. J. Inorganic Biochem., 79:219~223.
Vergara J.J., Niell F. X., Torres M., 1993. Culture of Gelidiumsesquipedale (Clem.) Born. Et Thur. in a chemostat system.Biomass production and metabolic responses affected by Nflow. J. appl. Phycol., 5: 405~415.
Vergeer P., Rengelink R., Ouborg N.J. & Roelofs J.G.M.,2003. Effects of population size and genetic variation on the response of Succisa pratensis to eutrophication and acidification. J. Ecology 91: 600~609.
Vieira R.H.S.F., Volesky B., 2000. Biosorption: a solution to pollution? Int. Microbiol., 3:17~24.
Volesky B., I. Prasetyo., 1994. Cadmium removal in a biosorption column.Biotechnol. Bioengin., 43:1010~1015.
Wang T. C., Weissman J. C., Ramesh G., Varadarajan R., Benemann J. R.,1996. Heavy metals removal with water milfoil (Myriophyllum spicatum) inconstructed wetland.
Webster E. A., Gadd G.M., 1996. Perturbation of monovalent cation composition in Ulva lactuca by cadmium, copper and zinc [J] . Biometals, 9 (1) :51~56.
Webster E.A., Murphy A.J., Chudck J.A.,1997, Metabolism independent binding of toxic metals by Ulva lactuca cadium bind to oxygen containing group, asdetermined by NMR [J] Biometals, 10 :105~117.
Williams T.P., Bubb J.M., Lester J.N., 1994. Metal accumulation within salt marsh environments: a review. Mar. Pollut. Bull., 28 (5):277~290.
Wilson R.W., Taylor E.W., 1992. Transbranchial ammonia gradient and acid-baseresposes to high extermal ammonia in rainbow trout (Oncorhynchus myskiss)accilmated to different salinity. J. Exp. Biol., 166:95~112.
Wood C.M., 1993. Ammonia and urea metabolism and excretion. In : D.H. Evans(Editor), The Physiology of Fishes. CRC Press, Boca Raton, FL, pp:379~425.
Wright P.A., 1995. Nitrogen excretion : three end products, many physiological role. J.Exp. Biol., 198:273~281.
Xue H.-B., Stumm W., Sigg L., 1988. The binding of heavy metals to algal surfaces. Water Res., 22:917~926.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top