跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高聖龍
研究生(外文):Sheng-Long Kao
論文名稱:船舶航行與作業安全系統之研究-模糊警戒圈之建立
論文名稱(外文):Studies on the navigation and operation safety system for vessels by Fuzzy Guarding Ring
指導教授:李國添李國添引用關係
指導教授(外文):Kuo-Tien Lee
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:124
中文關鍵詞:海洋環境地理資訊系統模糊警戒圈多評準決策
外文關鍵詞:MEGISFuzzy Guarding RingMCDM
相關次數:
  • 被引用被引用:8
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
目前的船舶交通服務(Vessel Traffic Service;VTS)對其港區附近交通熱點水域,必須建置船舶行安全監控與碰撞警戒機制,然而當船舶眾多與海況不佳時,以傳統雷達建構航行安全系統仍有無法即時以絕對方位掌控船舶動態與克服電波死角的限制,因此,建置一套更先進有效的船舶避碰警戒系統,是目前最迫切重要的議題。本研究嘗試建置船舶航行與作業安全系統,利用船舶自動識別系統(Automatic Identification System;AIS)之船舶動、靜態、海洋環境參考資料(NOAA)及自行研發之移動式地理資訊水文即時監測方法(專利證書字號:I245126),結合海洋環境地理資訊系統(Marine Environmental Geographic Information System;MEGIS)之時間軸與空間軸管理的概念,透過模糊邏輯理論,輸入船型、船速及海況等三項語意變數,得出船舶碰撞警戒圈與危險指標量值,建構我國沿近海船舶航行與作業安全之避碰警戒系統,做為我國臨海地區航行安全監測規劃之參考。研究內容及成果摘要如下:
一、本研究已整合即時差分全球衛星定位系統、海洋量測儀與自動資料儲存系統,並依國際電子海圖規範,以點、線、面多層次圖層管理及空間規劃,完成台灣週邊海域電子海圖與基隆、台中、高雄、花蓮等港口之三維海洋環境地理資訊系統(MEGIS)。此外,藉由地理資訊系統強大之空間管理及時間分析能力,納入多目標空間決策支援方法建構完成我國漁業自動識別系統評選分析,並以基隆港為例,完成船舶交通服務站(VTS)最佳觀測位置選擇之規劃。
二、移動式海洋地理資訊海上水文環境監控方法及其系統,業已申請台灣專利(公告案號:94103827),可有效即時顯示船隻及水文即時資料,監控船舶位置、表水溫及水下聲納資料等,經由MEGIS換算監測距離、航跡、流向、流速、瞬間速度、平均速度、表水溫及相關水文資訊,其位置誤差值小於20公尺,溫度精確度介於-0.1至+0.1度之間,可應用於海上災難搜救所在位置標示、油污染監測與水文環境即時監測回報及趨勢預測等。
三、結合AIS與MEGIS,完成多船舶航行安全監控及碰撞危險排序結果顯示,在港口交通頻繁區域、可藉由船舶大小、船速及海況等資料,建構船舶監測避碰警戒圈與碰撞危險指標概念。知當船長100公尺,船速10節,海況2級時,有效避碰警戒圈為1.086海浬,較以往傳統雷達警戒圈(3海浬)靈敏,藉此模式則可改進傳統自動測繪雷達以相對方位計算的耗時繁瑣步驟,排除雷達因天候影響及掃瞄盲區之限制,以絕對方位為觀測基準,有效降低海事案件的發生。
四、本研究經由多項通訊模式比較分析,建置最適本國漁船沿近海監控系統,完成開發單波道(SSB)接收機,結合MEGIS監測系統,近海以泛歐行動電話(GSM)及超高頻(VHF)系統,遠洋以高頻(HF)、SSB及衛星通訊(Inmarsat C)系統,進行我國本地近海漁業船舶自動監控為最佳化規劃,其結果顯示HF系統最佳,可成為我國漁船監測系統之規劃。
五、利用模糊邏輯系統(Fuzzy Logic System)及模糊警戒圈(Fuzzy Guarding Ring)、危險指標(Danger Index)與船舶安全量值(Safe Value)等參數值,已建構一以全球衛星定位系統(GPS)座標為絕對方位的船舶安全決策支援系統,其下包含兩個決策模組,(1)當碰撞警戒初始條件成立後,利用根弦理論計算碰撞警戒圈,導入船型、船速及海況等三項語意變數,對不同船隻動態與環境變動因子,解算得出模糊警戒圈大小值,其中根弦長度變動量為碰撞危險指標。(2)為模糊碰撞警戒模組,可計算兩船至預期軌跡交點的時間差值,並推導出介於絕對危險與絕對安全間的標準量值,預估船舶可能碰撞機率。以作業中漁船碰撞警戒機制為例,當大船以22節速度靠近靜止作業漁船時,經由模糊碰撞警戒圈啟動機制計算,電腦螢幕顯示危險指標值由0.5增加至0.75時,發出警戒信號,將有效警告漁船避免碰撞,使作業中漁船採取避碰措施提早達四倍之時間,可提高靜止或作業中漁船之安全,降低碰撞事件之發生率。
六、在實驗驗證上,利用2003-2004年間基隆港船隻動態資料及警戒圈模式經過多次運算與分析後,模擬迎首正遇、交叉相遇及他船追越等主要兩船會遇之避碰模式分析,結果顯示,本研究建置之船舶碰撞預警機制與危險指標,將有效降低人為疏失,對提升台灣港口各型船隻航行與漁船作業安全,有極大助益。

Currently Vessel Traffic Service (VTS) does not have enough technical capability to monitor a crowded surveillance area to maintain safety. Without an efficient alerting system, many marine accidents have occurred due to operator oversight. In this article, a new fuzzy logic method is proposed to add vessel collision avoidance capability to VTS/AIS systems for all potential collision ships in the surveillance area. Starting from the VTS standpoint and integrating AIS data into the Marine Environmental Geographic Information System (MEGIS) as a platform, the calculations of ship domain and ship inertial force are utilized to generate models of guarding ring and danger index. By this means, a precise prediction of collision time and position can be achieved using a marine GIS spatial analyst module. The proposed method is able to enhance the VTS operator’s decision-making abilities by providing a collision avoidance alerting system.

論文目錄
論文摘要 ---------------------------------------------- I
壹、緒言 ---------------------------------------------- 1
1.1研究背景 ------------------------------------------- 1
1.1.1 船舶海上航行與作業活動避碰之問題 - -------------- 1
1.1.2海洋環境地理資訊系統之發展現況及問題 ------------- 2
1.1.3船舶自動識別系統於漁船管理之構想----------------- 13
1.1.4模糊邏輯理論方法--------------------------------- 15
1.1.5水文環境即時監測系統之研發----------------------- 15
1.2研究目的------------------------------------------- 17
1.2.1海洋環境地理資訊系統之研發----------------------- 17
1.2.2 水文遙測系統於環境監測之整合與應用-------------- 17
1.2.3 多目標決策支援方法建構漁船自動識別系統---------- 18
1.2.4模糊邏輯理論於漁船安全之模式建立----------------- 18
1.3論文之流程及概要----------------------------------- 19
貳、材料與方法---------------------------------------- 23
2.1海洋環境地理資訊系統之整合 ------------------------ 23
2.1.1地理資訊系統 ------------------------------------ 24
2.1.2水下量測及移動式通訊系統 ------------------------ 24
2.1.3水文遙測系統於環境監測之整合 -------------------- 26
2.1.4海洋空間資料於漁業資源管理分析 ------------------ 27
2.1.5漁船自動識別系統 -------------------------------- 32


2.2多評準決策應用於漁船自動識別系統之決選 ------------ 35
2.2.1多目標決策法則 ---------------------------------- 35
2.2.2資料分析與處理 ---------------------------------- 40
2.3. 模糊邏輯控制理論應用於船舶避碰警戒圈之分析------- 42
2.3.1模糊區分與模糊控制邏輯理論 ---------------------- 45
2.3.2模糊警戒圈與安全時間差模組分析 ------------------ 52
2.4.現場實測與電腦模擬 ------------------------------- 55
參、結果 --------------------------------------------- 58
3.1台灣海洋環境地理資訊系統 -------------------------- 58
3.2水下量測及移動通訊系統 ---------------------------- 61
3.2.1干涉式測深儀資料分析 ---------------------------- 61
3.2.2水下測量移動式通訊系統 -------------------------- 62
3.3台灣水文資料即時監測系統 -------------------------- 64
3.4台灣漁船自動識別系統決選結果----------------------- 67
3.5模糊邏輯警戒圈理論運算分析 ------------------------ 69
3.5.1船舶航行避碰模糊警戒圈模型 ---------------------- 69
3.5.2碰撞危險指標與船舶碰撞危機之關係 ---------------- 72
3.5.3船舶航行模糊警戒圈之模擬結果 -------------------- 75
3.5.4模糊危險指標模擬成果 ---------------------------- 78
肆、討論 --------------------------------------------- 81
4.1台灣移動式海洋環境地理資訊系統 -------------------- 81
4.1.1台灣與國際發展現況之比較 ------------------------ 81
4.1.2海上移動通訊技術之探討 ------------------------- 82
4.1.3數位海圖屬性資料之特性 -------------------------- 84
4.2台灣沿海作業中漁船避碰之探討 ---------------------- 85
4.2.1國外的發展現況與我國漁船管理之困難分析 ---------- 85
4.2.2台灣沿海作業中漁船避碰之探討 -------------------- 86
4.3決策支援與模糊邏輯理論特性之探討 ------------------ 86
4.3.1 海洋環境多目標決策之特性分析 ------------------- 86
4.3.2 海洋環境模糊邏輯理論之特性分析 ----------------- 88
4.4 結語 --------------------------------------------- 89
伍、謝辭 --------------------------------------------- 91
陸、參考文獻 ----------------------------------------- 97
附錄 -------------------------------------------------107

Abdulaal, M. and L. J. LeBlanc (1979). Continuous equilibrium network design models, Transportation Research., 13B: 19-32.
Amidei, R. (ED). (1983). Applications of remote sensing to fisheries and coastal resources, Report of a California Sea Grant workshop., 2:122-131.
Aronoff, S. (1989). Geographic information system: a management perspective. Ottawa, Ontario, Canada WDL Publications., 56-61.
Assilzade, H. and S. B. Mansor (2001). Early warning system for oil spill using SAR images, 22nd Asian Conference on Remote Sensing.,168-175.
Barbara, A.B., H. Dewar, C. Farwell and E.D. Prince (1998). A new satellite technology for tracking the movements of Atlantic bluefin tuna, Proc. Natl. Acad. Sci. USA., 95: 9384-9389.
Basu, A. (1998). Case study of land marine data integration using GIS, Surveying and Land Information Systems ., 58(3):147-155.
Bateman, A. (1998). Digital Communications: design for the real word , Ddison-Wesley.
Beaubouef, T. and J. Breckenridge (2000). Real-world issues and applications for real-time geographic information system(RT-GIS), Journal of Navigation.,87-98.
Bednarz, S. W. (2004). Geographic information systems: A tool to support geography and environmental education? Journal of Geographic., 60: 191-199.
Bialas, W. and M. Karwan (1984). Two-level linear programming, Management Science., 30:1004-1020.
Bonissone, P. P. (1982). A fuzzy sets based linguistic Approach: theory and applications.Approximate resoning indecision analysis, Amsterdam:North Holland., 329-339.
Caddy, J. F. and F. Carocci (1999). The Spatial allocation of fishing intensity by port-based inshore fleets. A GIS application, I CES Journal of Marine Science., 56: 388-403.
Chen, M. and A. S. Alfa (1991). A network design algorithm using a stochastic incremental traffic assignment approach, Transportation Scienc., 25:215-224.
Coldwell, T. G. (1983). Marine traffic behaviour in restricted waters, Journal of Navigation., 36:430-444.
Davis, P. V., Dove, M. J. and Stockel, C. T. (1980). A computer simulation of marine traffic using domains and arenas, Journal of Navigation., 33: 215-222.
Davis, P.V., M.J. Dove and C.T. Stockel (1982). A computer simulation of multi-sip encounters, Journal of Navigation., 35: 347-352.
Environmental Systems Research Institute, Inc. (1996). Using the Arcview spatial analyst, ESRI., 59-78.
Falkengerg, W. P., G.. Kielland. And C. Lachapella (1998). GPS differential positioning technologies for hydrographic surveying, IEEE.,310-317.
Feng, C. M. and Y. J. Wu (1999). Using multi-objective fuzzy de novo programming and GIS in highway network investment planning, Journal of the Eastern Asia Society for Transportation Studies., 3:81-90.
Fennessy, M. J. (1999). Dynamic environment charting-the next stage for marine electronic navigation, Journal of Navigation,.32:123-134.
Filipowicz, W. (2004). Traffic control problems, Journal of Navigation., 57:15-24.
Fortuny, A.J. and B. McCarl (1981). A representation and economic interpretation of a two-level programming problem, Journal of Operational Research and Society., 32:783-792.
Fowler, C. and N. Schmidt (1998). Geographic information systems, mapping, and spatial data for the coastal and ocean resource management community, Surveying and Land Information Systems., 58(3):135-140.
Frankel, E. G. (1992). Hierachical logic in shipping policy and decision-making, Marit. Pol. MGMT.,19(3):211-221.
Frederick,W. and J. Bronaugh (2001).Senior ECDIS Instructor, shiphandling facilitator VTS, AIS, ECDIS – A natural synergy, marine safety international, Newport Center, RI, USA.,45-58.
Friel, C. (1993). Timothy Leary, GIS spreads to oil spill management planning in Japan. GIS World., 3:129-136.
Fujii, Y. and Tanaka, K. (1971). Traffic capacity, Journal of Navigation., 24:543-552.
Giuliano. G. (2003). Shipboard automatic identification systemdisplays, Tarnsportation research board., Washington D. C.,Chap.3,4.
Goodwin, E. M. (1975). A Statistical Study of Ship Domain, Journal of Navigation., 28:328-344.
Goodwin, E. M. (1975). A statistical study of ship domain. Journal of Navigation., 28: 328-344.
Guy, N. (2002).The challenges of ECDIS, International Congress-Geomatica Havana Cuba., 16-17.
Hudak, P. F. and D.J. Wachal (2001). Oil production, agriculture, and groundwater quality in the southeastern gulf coast Aquifer, TEXAS, Environmental monitoring and assessment., 72: 249-264.
Hwang, C. L. and K.Yoon (1981). Multiple attribute decision making methods and application, Wiley.
Hwang, N. (2002). The integrated design of fuzzy collision-avoidance and H∞-autopilot on ship, Journal of Navigation., 55: 117-136.
IHB (International Hydrographic Bureau) (1996). International hydrographic organization, special publication NO.57 IHO transfer standard for digital hydrographic data,4th edition.
IHB (International Hydrographic Bureau) (1997). International hydrographic organization, special publication No.52 appendix: colour & symbol specifications for ecdis, 4th edition.
IMO Assembly Resolution A.(1995). Performance standards for electronic chart display and information system (ECDIS)., 817(19).
Ingo H. and H. Bremen (1999). AIS adding new quality to VTS systems, ETT99/SATNAV99 Conference, DGON/NIN in Potsdam.,Germany, 53:527-539.
International hydrographic bureau international hydrographic organization (1996). Special Publication NO.57: IHO transfer standard for digital hydrographic data, 4th edition.
International Hydrographic Bureau(1997). International hydrographic organization, special publication NO.52 Appendix 2: Color & Symbol specifications for ECDIS, 4th edition.
Iorita, T. and Worland, N. L. (1998). GIS spreads to oil spill management planning in Japan, GIS Asia Pacific.
Jacek, M. (1999).GIS and multi -criteria decision analysis, Wiley., 1:95-100.
James, M. K. (1986). Modelling the decision process in computer simulation of ship navigation, Journal of Navigation., 39: 32-47.
Jayko, K. and E. Howlett (1992). An Interactive Oil Spill Model,Ocean’92, Newport, RI, Oceanic Engineering Society of IEEE.,.199-205.
Johansen, E. (1990). City’s GIS tracking the California oil spill, GIS World., 232-243.
Kacprzyk, J. (1997). Multistage fuzzy control.Amodel-based approach to fuzzy contrl and decision making, John Wiley and sons.,Chap.2.
Kao, S. L. , Lee, K. T. and Ko, M. D.(2003).Analysis and comparison of Taiwan fishery automatic identification system(FAIS). J. Fish. Soc. Taiwan., 30(2):101-115.
Kao, S.L. , Lee, K. T., Lee, M. A. and Ko, M. D. (2005). Development of MEGIS for monitoring the hydrologic environment in Taiwan waters, J. Fish. Soc. Taiwan., Vol.32, No.2, pp.159-173.
Kaplan, E.D. (1996). Understanding GPS principles and application, Artech House.
Ko, M. D., Kao,S. L. and Hong, W. H. (2000). Marine geographic information system for the analysis of marine traffic flows and 3d spatial analysis of vessel traffic management systems. Processings of the International Seminar on Global Transportation Network-issues on its safety and management, 1:1-10.
Ko, M. D., S. L. Kao and J. C. Thai (2001). The study of Keelung harbor marine geographic information system: application to harbor dredging. Processings of the National conference on technical education., 97-106.
Kubota, M. (1994). A new cloud detection algorithm for nighttime AVHRR/HRPT data. J. Oceanographic, 50:31-41.
Lachapelle,G., P. Kielland and M. Casey (1992).GPS for marine Navigation and Hydrography. International Hydrographic Review., 43-69.
Lai, H.C. and Y. Kwangsun (1981). Multiple Attribute Decision Making Methods and Applications.
Lai, Y. J. and C.L. Hwang (1999). Fuzzy multiple objective decision making methods and applications., Wiley.
Lamb, W. G. P. and J. M. Hunt (1995). Multiple Crossing Encounters. Journal of Navigation, 48: 105-113.
Lamb, W. P. G. (1985). The Calculation of Marine Collision Risks, Journal of Navigation., 38: 365-374.
LeBlanc, L. J. (1975). An algorithm, for the discrete network design problem, Transportation Science., 1(9): 183-199.
Lee, S., K. Kwon and J. Joh (2004). A fuzzy logic for autonomous navigation of marine vehicle satisfying colreg guidelines, International Journal of Control, Automation, and Systems., 2(2): 171-181.
Li, H. L. (I988). Expert system for evaluating multicriteria transportation networks, Microcomputer in Civil engineering., 3(3):259-265.(in Chinese).
Li, R. and N.K. Saxena (1993). Development of an Integrated Marine Geographic Information System. Marine Geodesy., 16:293-307.
Lozano, J. L., J. Corber and F. X. Martìnez (2000). Design of a remote monitoring system for high speed craft, Journal of Navigation., 53:465-471.
Malcolm L. S. (1992).Oilmap: A Global Approach to Spill Modeling, 15th Annual Arctic and Marine Oil Spill Program Technical Seminar, Edmonton, Alberta, Canada.
Malczewski. J. (1999). GIS and multicriteria decision analysis. Wiley ,Chap.3.
marine facilities panel (MPF) of the united states japan cooperative program in natural resources (ujnr), web sit : http://www.dt.navy.mil/ip/mfp/index.html.
McCall, J.C. (1998). Advances in national data buoy center technology, IEEE Oceans '98 Conference Proceedings.,136-148.
Millett, N. G. and S. Evans (2002). Hydrographic data management using GIS, Technologies, Environmental Systems Research Institute., New York.
Murchland, J. (1970). Braess' paradox of traffic flow, Transportation Research, 16(B):45-55.
Nathaniel Bowditch, (1981) American practical navigator, defense mapping agency hydrographic/topographic center.
Pillich, B. and G. Buttgenbach (2001). ECDIS-the intelligent heart of the hazard and collision avoidance system, IEEE, 1116-1119.
Ramesh, S. L. (1993).Use of real-time dgps base station concept to collect point location data for a GIS, IEEE-IEE Vehicle Navigation & Information Systems Conference, Ottawa-VNIS.,460-450.
Rarnbaut, M. (2002). The role of IEC TC80 in the development of Automatic Identification System (AIS), IMO/IALA seminar on the Automatic Identification System(AIS).,1:1-2.
Roy, B. (1989). The outranking approach and the foundations of ELECTRE methods, University of Paris-Dauphine, Document Du Lamsade., 2(1):59-65.
Saaty, T. L. (1980). The analytic hierarchy process multiobjective decision making for traffic assignment, IEEE Transportation on engineering Management., l(40): 180-187.
Saaty, T. L. and L.G. Vargas (1991). Prediction, projection, and forecasting: applications
of the analytic hierarchy process in economics, finance, politics, games, and sports. Sakaida, F., and H. Kawamura. (1992). Accuracies of NOAA/NESDIS sea surface temperature estimation technique in the oceans around Japan., J. Oceanographic, 48:
345-351.
Sandford, B.(2000). Automatic Identification System (AIS), The Royal Institute of Navigation., 1:1-10.
Sato, Y. and Ishii, H. (1998). Study of a Collision-Avoidance System for Ships. Control Engineering Practice, 6: 1141-1149.
Simpson, J. J. and C. Humphrey (1990) An automated cloud screening algorithm for daytime Advanced Very High Resolution Radiometer imagery, J. Geography. Res., 95(c8): 13459-13481.
Sipson, J. J. (1994). Remote sensing in fisheries; a tool for better management in the utilization of a renewable resource, Canadian Journal of Fisheries and Aquatic Sciences., l(51):743-771.
Smeaton, G. P. and F. P. Coenen (1990). Developing an Intelligent Marine Navigation System. Computing and Control Engineering Journal., 1(2): 95-103.
Submetrix (1997) ISIS 100 User’s Manual, Submetrix Limited., 17-19.
Takeyuki, O. and H. Mizokami (2001). Summary of Transportation Management System for Costal Ships Using Satellite Packet Communication Techniques, Marine Facilities Panel 24th UJNR Meeting.,36-45.
Tebeau, P., C. Douligeris and J. Collins (1996). Meeting user needs in designing oil spill information management system, Ocean ’96, MTS/IEEE, prospect for the 21st century, Conference Proceedings, 2:134-145.
Tzeng, G. H. and C. H. Chen (1993). Multiobjective decision making for traffic assignment, IEEE Transportation on Engineering Management., l(40):180-187.
Watt, J.V. (1999). Seabed classification-a new layer for the marine GIS, Quester Tangent.
Weerasooriya, K. T., W. Hills and P. Sen (1992).The selection of fishing vessel fleet operations using a multiple criteria optimization method, MARIT. POL MGMT., 19(1):51-54.
Wilson, P.A. and C.J. Harris (2003). A line of sight counteraction navigation algorithm for ship encounter collision avoidance, Journal of Navigation, 56:111-121.
Yen, J.B. (2000).Fundamentals of global positioning system receivers a software approach , John Wiley & Sons .
Zhao, J., Z. Wu and F. Wang (1993). Comments on ship domains, Journal of Navigation., 46:422-437.
Zhu, X., H. Xu, and J. Lin (2001). Domain and Its Model Based on Neural Networks, Journal of Navigation., 54: 97-103.
江義華 (2002) 完美經典Visual Basic 6,金禾資訊股份有限公司。
李台生、宋真坦 (1999) 全球定位系統與慣性導航系統整合之研究(A Study to Integrating GPS/INS Navigation System)。海洋大學。
李志清 (1999) 以數位式行動通訊網路建構高應用性之自動回報系統。國立成功大學航空太空工程學系。
李汪華 (1994) 海洋地理資訊系統發展之先期研究(A Preliminary Study of Marine Geographic Information Systems) 。國立台灣海洋大學航運技術研究所碩士論文。
何孝鐳 (1981) 海水污油污染。交通部交研所。
邱文彥 (2000) 海岸管理理論與實務。五南圖書出版公司。
吳兆麟 (2001) 時間碰撞危險度及模型。大連大學海事學報,第二十七卷第二期。
吳兆麟 (1993) 海上交通工程。大連海運學院出版社出版。
卓誠裕 (1996),海洋油污染防治技術,大陸北京國防工業出版社。
洪文雄、高聖龍、柯明德 (1999) 建置基隆港海洋地理資訊系統於海圖校正之研究。中華民國運輸學會第十四屆論文研討會,485-494。
高聖龍、柯明德、王在莒、馮正民(2002) 油污染地理資訊系統於搶救站選址及資源分配規劃之研究。中華民國運輸學會第十七屆學術論文研討會,85-93。
陳建宏 (2003) GIS 在沿岸漁業海域區劃之應用。海洋大學環境生物與漁業科學學系。
黃明和、安仲芳、陳華民、周清和 (2003) 如何建構一套自主性之我國沿近海漁船作業監控系統。農委會漁業署出版品漁業推廣第198 期。
張德龍、高聖龍、柯明德 (2001) 海洋地理資訊系統於海洋污染管理之規劃。中華民國第二屆兩岸航運研討會。
鄭育民(2002)台灣東部近岸海流特性之調查報告。海洋大學河海工程系。技學術研討會。
蔡金城、高聖龍、柯明德、李國添(1999)廣幅掃測聲納系統應用於基隆港海洋地理資訊系統(MGIS)之研究。中華民國運輸學會第十四屆論文研討會,495-504。
蔡金城 (2000) 基隆港海洋地理資訊系統應用於港灣浚深工程之研究。國立台灣海洋大學航運技術研究所碩士論文。
龔誠山、陳宜清、蘇國旭、鄧耀□ (1995)海域溢油污染之漂移擴散研究。中興工程顧問社。
成功大學近海水文中心網頁http://www.comc.ncku.edu.tw/
美國ESRI 製作地理資訊系統公司網站:http://www.esri.com
http://www.zidonghua.com.cn/zdh/apply/detail.asp?id=78
http://www.icetech.com.tw/

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top