跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭建國
研究生(外文):Jheng, Jian-Gu
論文名稱:參數變化對水氣轉移反應之影響
論文名稱(外文):Effect of varying parameters on water gas shift reaction
指導教授:陳維新陳維新引用關係
指導教授(外文):Chen, Wei-Hsin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:94
語文別:中文
論文頁數:98
中文關鍵詞:水氣轉移反應產氫微波CO轉化率
外文關鍵詞:Water gas shift reactionhydrogen generationmicrowaveCO conversion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討水氣轉移反應在各種各樣的操作的條件下之反應特性。研究中使用兩種不同的催化劑,包含高溫催化劑(Sud Chemie, SHT-4) 及低溫催化劑(Sud Chemie, MDC-7)進行反應。另外,研究中也使用兩種不同的加熱方式,如傳統電熱和微波加熱系統進行探討。研究中特別強調固定反應氣體於觸媒床之滯留時間條件下,蒸汽及一氧化碳的比值與溫度改變對CO轉化率及產氫的影響,實驗結果說明電熱系統各別使用高溫催化劑及低溫催化劑各有三種不同反應區域。高溫催化劑作用下有快速成長、緩速成長與中等成長三區域,而低溫催化劑作用下有快速成長、緩速衰退與成長凍結三區域。
當微波系統應用在水氣轉移反應時與電熱系統比較具更能在極短時間激發水氣轉移反應,反應也優於電熱加熱。因此,微波加熱使用在水氣轉移反應是十分具有前瞻性。
關鍵詞:水氣轉移反應、催化劑、CO轉化率、產氫、微波
The present study is intended to investigate reaction characteristics of a water gas shift reaction (WGSR) under various operational conditions. Two different catalysts, consisting of a high-temperature catalyst (Sud Chemie, SHT-4) and a low-temperature catalyst (Sud Chemie, MDC-7) are individually employed in the reactions. In addition, two different heating methods, composed of a conventionally electric heating and a microwave heating, are adopted in the reactor. With the condition of fixed residence time of reactants in the catalyst bed, the effects of varying reaction temperature and steam/CO ratio on the CO conversion and hydrogen generation are explored. The experimental results indicate that using the electric heating three different reaction regimes can be identified either the high-temperature catalyst or the low-temperature catalyst is used. When the high-temperature catalyst is utilized, the regimes include a rapid growth regime, a slow growth regime and a progressive growth regime. Considering the low-temperature catalyst, the reactions can be classified into a rapid growth regime, a progressive decay regime and a growth-frozen regime. When the WGSR is triggered by the microwave, the reaction can be excited in a short time compared with the electric heating. It is also found that the reaction behaviors of the WGSR with microwave excitation are better than those with electric heating. Therefore, the present has provided a new insight into the WGSR using microwave heating.
Keywords: Water gas shift reaction; Catalyst; CO conversion; hydrogen generation; microwave.
目錄 頁次
致 謝
中文摘要 ------------------------------------------------------------------------Ⅰ
英文摘要 ------------------------------------------------------------------------Ⅱ
目 錄 ------------------------------------------------------------------------Ⅲ
表 目 錄 ------------------------------------------------------------------------Ⅵ
圖 目 錄 ------------------------------------------------------------------------Ⅶ
第一章 緒論 -------------------------------------------------------------------1
1.1 前言 ------------------------------------------------------------------ 1
1.2 研究動機 ------------------------------------------------------------ 4
第二章 文獻回顧 -------------------------------------------------------------5
2.1 產氫方法種類介紹 -------------------------------------------------5
2.2 熱化學反應基本介紹 ----------------------------------------------6
2.3 文獻回顧 -------------------------------------------------------------7
2.3.1 高溫催化劑 ---------------------------------------------------8
2.3.2 低溫催化劑 ---------------------------------------------------9
第三章 水氣轉移反應設備與儀器 ----------------------------------------12
3.1 電熱實驗系統介紹 -------------------------------------------------12
III
3.2 微波實驗系統介紹 -------------------------------------------------14
第四章 水氣轉移反應參數 -------------------------------------------------22
4.1 催化劑種類 ---------------------------------------------------------22
4.2 反應溫度範圍 ------------------------------------------------------31
4.3 水氣轉移反應濃度配比計算 ------------------------------------31
第五章 實驗步驟與方法 ----------------------------------------------------38
5.1 氣體分析儀(Gas Analyzer)校正及設定 --------------------38
5.2 氣相層析儀(Gas Chromatograph)校正及設定 ---------------39
5.3 蠕動泵檢量線校正 ------------------------------------------------42
5.4 水氣轉移實驗步驟 ------------------------------------------------44
第六章 結果與討論 ----------------------------------------------------------47
6.1 電熱反應系統 ---------------------------------------------------------47
(1)高溫催化劑耐久性分佈圖 ----------------------------------47
(2)高溫催化劑轉化率分佈圖 ----------------------------------53
(3) 高溫催化劑作用後產氣中CO2吸收 ----------------------59
(4)低溫催化劑耐久性分佈圖 ----------------------------------63
(4) 低溫催化劑轉化率分佈圖 ---------------------------------68
(5) 低溫催化劑作用後產氣中CO2吸收 ---------------------74
IV
6.2 微波反應系統 --------------------------------------------------------78
(1) 微波系統較佳滯留時間------------------------------------78
(2) 參數變化對微波系統水氣轉移反應之影響------------81
第七章 結論 -------------------------------------------------------------------95
參考文獻 -------------------------------------------------------------------------96
1. Andrea M, Duarte de Farias., Ana P.M.G, Barandas., Rafael F, Perez., Marco A, Fraga., “Water-gas shift reaction over magnesia-modified Pt/CeO2 catalysts,” Journal of Power Sources, Vol.165 pp.854-860, 2007.
2. Basinska, A., Domka, F., “The effect of lanthanides on the Ru/Fe2O3 catalysts for water-gas shift reaction,” Applied Catalysis A: General, Vol. 179, pp.241-246,1999.
3. Chen, C.S., Chen, W.H., Lin, S.S., “Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction,” Applied Catalysis A: General, Vol.257 pp. 97–106, 2004.
4. Rhodes, C., Williams, B.P., King, F., and Hutchings, G.J., “Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst,” Catalysis Communications, Vol.3, pp.318-384, 2002.
5. Souza, T.R.O., Brito, S.M.O., and Andrade, H.M.C., “Zeolite catalysts for the water gas shift reaction,” Applied Catalysis B: Environmental, Vol.178, pp.7-15, 1999.
6. Sakurai, H., Akita, T., Tsubota, S., Kiuchi, M., Haruta, M., “Low-temperature activity of Au/ CeO2 for water gas shift reaction, and characterization by ADF-STEM,temperature-programmed reaction, and pulse reaction,” Applied Catalysis A: General, Vol. 291, pp.179–187, 2005.
96
7. Tanaka, Y., Utaka, T., Kikuchi, R., Takeguchi, T., Sasaki, K., Eguchi, K., “Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide,” Journal of Catalysis, Vol.215, pp.271–278, 2003.
8. Tanaka, Y., Takeguchi, T., Kikuchi, R., Eguchi, K., “Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels,” Applied Catalysis A: General, Vol.279, pp. 59–66, 2005.
9. U.S. Department of Energy(DOE) “A National Vision of America's Transition to A Hydrogen Economy to 2030 and Beyond,” February 2002.
10. Wang, X., Gorte, R.J., “The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction,” Applied Catalysis A: General, Vol.247, pp.157-162, 2003.
11. Haryanto, A., Fernando, S., Murali, N., and Adhikari, S., “Current Status of Hydrogen Production Techniques bySteam Reforming of Ethanol: A Review” Energy & Fuels, Vol.19,pp. 2098-2106, 2005.
12. Zhichao, T., Yong, Y., Chenghua, Z., Tingzhen, L., Jianhua, W., Haijun, W., Hongwei, X., Yongwang, L., “Effect of calcium promoter on a precipitated iron–manganese catalyst for Fischer–Tropsch synthesis,” Catalysis Communications, Vol.7, pp.1061-1006, 2006.
13. Zerva, C., Philippopoulos, C.J., “Ceria catalysts for water gas shift reaction:Influence of preparation method on their activity,”
97
Applied Catalysis B: Environmental, Vol.67, pp.105–112, 2006.
14. 柯賢文,“未來的氫能經濟”,科學發展399期,2006年3月。
15. 曲新生,陳發林,“氫能技術”,五南圖書有限公司,2006年4月。
16. 陳維新,“能源概論”,高立圖書有限公司,2006年7月。
17. 謝泰慶、陳維新、江滄柳,“水氣轉移反應產生氫氣之研究”,第一屆全國氫能與燃料電池學術研討會,2006年11月3-4日,南投縣。
18. 謝泰慶,水氣轉移反應產生氫氣之實驗探討,輔英科技大學碩士論文,2006年11月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top