跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:dbb8:8235:aad7:a019) 您好!臺灣時間:2024/12/08 06:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高世偉
研究生(外文):Shr-Wei Gau
論文名稱:使用離散模式對旋流油水分離器分離效率之數值研究
論文名稱(外文):A Numerical Study On The Separation Efficient For Hydro-Cyclone Oil-Water Separation
指導教授:楊國誠
指導教授(外文):Kuo-Cheng Yang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:81
中文關鍵詞:油水分離器分離效率
外文關鍵詞:RSMDPM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來環保意識日漸高漲,任何可能造成環境污染的事件,都會被特別的關注。其中以海洋污染造成的影響最大,從漁船排放出的油汙可說是造成海洋污染最主要的原因,故須於船舶上設置油水分離器分離油水再予以排放以符合國際公約規定。本文以計算流體力學的方式,藉由應用分析軟體,模擬適用於小型漁船用之旋流式油水分離器進行數值研究。計算出其流場及分離效率等相關資訊,並以標準型(standard) 及圓錐型(conical)旋流器為實際案例進行探討。
其中模擬速度流場之數值方法,是使用適合於渦流之雷諾應力模式(Reynold Stress Model﹐RSM),針對旋流器不同高度之橫切面作速度流場分析;也利用DPM分散相模式法(Discrete Phase Models)去分析不同外型旋流器之分離效率與影響因素,由研究結果得知具圓錐漸縮腔之旋流器分離效果較好,時間也較快;兩相流體若於入口較接近軸心處進入旋流器則較容易被分離。故本研究目地是期望能得到有助於改善油水分離器分離效率相關訊息,並對往後設計新式油水分離器有所幫助。
The environmental consciousness ran high day by day during these years, any may cause the incident of the environmental pollution will be concerned specially. The ones that cause with the marine pollution among them are the most influential; the oil wastewater discharged must be regulated. In order to comply with this purpose, we can set up the oil-water separator on the shipping boat to reduce the ocean pollute. This study utilizes the FLUENT software to simulate the flow field within the hydro-cyclone. We expect that using this evaluation, we can obtain the separation efficient for subsequent reference for the design of flow fields. In this study, the Reynolds Stress Model (RSM) has been applied in the numerical method to predict the velocity fields of flow motion on the two different type hydro-cyclones.
We also use Discrete Phase Models (DPM) to calculate the separation efficient on those different type hydro-cyclones. The numerical results show that the device with conical part will have better performance than which without having it. The multi-phase fluid is much easier to be separated when the inlet flow is more close to the axis of hydro-cyclone.
目錄
中文摘要 ..................................................i
目錄......................................................ii
表目錄.....................................................v
圖目錄....................................................vi
符號說明...................................................x

第一章 緒論................................................1
1-1 前言...................................................1
1-2 研究目的 ..............................................3
1-3 文獻回顧 ..............................................4

第二章 數學統御方程式 .....................................8
2-1 基本假設...............................................8
2-2 統御方程式.............................................8
2-3 紊流模式 ..............................................9
2-4 RSM紊流模式...........................................10
2-5 DPM分散相模式法.......................................11

第三章 數值方法及物理模型 ................................15
3-1 FLUENT基本架構與簡介..................................15
3-2 交錯式網格點系統......................................16
3-3 離散化方法............................................17
3-4 物理模型…............................................19
3-5 邊界條件..............................................20
3-6 壓力速度耦合關係的處理................................20

第四章 結果與討論 ........................................25
4-1 模式驗證…............................................25
4-2 標準型旋流器模擬結果與文獻驗證........................26
4-3 純圓錐型旋流器........................................27
4-3-1 橫切面之軸向及切線速度..............................27
4-3-2 橫切面向量圖........................................28
4-3-3 縱切面(Y=0)流場計算結果.............................29

4-4 DPM模式..............................................31
4-4-1油滴顆粒於標準型旋流器內部流場的軌跡追蹤.............31
4-4-2油滴顆粒於圓錐型旋流器內部流場的軌跡追蹤.............33
4-4-3顆粒入口位置對分離效率的分析.........................35
4-4-4分離效率.............................................36

第五章 結論與未來展望 ....................................38
5-1 結論..................................................38
5-2 未來展望..............................................39
參考文獻 .................................................40
附表 .....................................................42
附圖......................................................43
參考文獻
1. M. Slack, ”Application Challenge-Cyclonic Separator,” FLUENT EUROPE LTD.(http:// www.qnet-cfd.net), 2000.
2. D. F. Kelsall, ”A Study of the Motion of Solid Particles in a Hydraulic Cyclone,” Trans. Instn. Chem. Eng. 30, pp.87-108,1952.
3. N. Bank and W. H. Gauvin, “Measurement of Flow Characteristics in a Confined Vortex Flow,” Can. J. Chem. Eng.55, pp.391-402, 1977.
4. A. J. Hoekstra, J. J. Derksen and H. E. A. Van Den Akker, ”An Experi-
mental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones,” Chemical Engineering Science, pp. 2055-2065,1999.
5. B. Chiné and F. Concha, ”Flow Patterns in Conical and Cylindrical Hydro-Cyclones,” Chemical Engineering Journal, pp. 267–273, 2000.
6. M. Slack, S. Del Porte and M. S. Engelman, ”Designing Automated
Computational Fluid Dynamics Modeling Tools for Hydrocyclone
Design,” Minerals Engineering, pp. 705-711, 2004.
7. T. J. Olson and R. Van Ommen, ”Optimizing Hydrocyclone Design Using Advanced CFD Model,” Minerals Engineering, pp. 713-720, 2004.
8. S. Schuetz, G. Mayer, M. Bierdel and M. Piesche, ”Investigations on the Flow and Separation Behaviour of Hydrocyclones Using Comput
ational Fluid Dynamics,” Int. J. Miner. Process, pp. 229-237, 2004.
9. Wei Xin-li, Zhang Hai-Hong, Wang Ding-Biao and Meng Xiang-Rui,
“Numerical Simulation of the Particles Track in a Cyclone Separator,”
Jounrnal of Zhengzhou University (Engineering Science), pp. 14-17,
2004.
10. M. Narasimha, R. Sripriya, P.K. Banerjee, ”CFD modeling of
hydrocyclone─prediction of cut size,” Int. J. Miner. Process, pp. 53– 68, 2005.
11. Jones,W. P. and Launder, B.E., "The Prediction of Laminarization with
A Two-Equation Model of Turbulence," Int. J. Heat Mass Tanser,
Vol.15, pp. 301-314, 1972.
12. Hinze, J. O., "Turbulence," McGraw-Hill Publishing Co.,
New York,1975.
13. Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat
Mass and Momentum Transfer in Three-Dimensional Parabolic Flow,"
Int. J. Heat Mass Transfer, Vol.15, pp. 1787-1806, 1972.
14. Patankar, S. V., "Numerical Heat Transfer and Fluid Flow,"
McGraw-Hill, New York.
15. Patankar, S. V., "A Calculation Procedure for Two-Dimensional
Elliptic Situations," Numerical Heat Transfer,Vol.4, pp. 409-425,1981.
16. Van Doormal, J. P. and Rairhby, G. D., "Enhancements of the SIMPLE
Method for Predicting Incompressible fluid flows," Numeriucal Heat
Transfer, Vol. 7, pp. 147-163, 1984.
17. Parks S. M., Oluwole O., Wehbe W. I., Olson T. J. and Petty C.A.,
"The Influence of Hydrocyclone Geometry on Separation Performance,"
18. FLUENT, “Fluent 6 User Guide,” Fluent Inc., 2001.
19.范揚玄, “旋流式油水分離器內部流場之數值研究,” 國立臺灣海洋
大學機械與機電工程學系,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top