跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳勝通
研究生(外文):Sheng-Tong Chen
論文名稱:海面動態模擬器之適應性控制
論文名稱(外文):Adaptive control of a Simulator for the Surface Dynamics of the Sea
指導教授:傅群超
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:適應性控制史都華平台模擬器渾沌訊號多重諧和訊號
外文關鍵詞:Adaptive controlStewart PlatformSimulatorchaotic signalmulti-harmonic signal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本文的研究目標為建立一套新型海面動態模擬器,並結合適應控制法則與隨機海浪理論,利用七連桿運動平台模擬海面上固定點的搖擺、起伏及俯仰等運動動態。由於此海面動態模擬器是一高度非線性系統,且其許多參數可能為時變或難以獲得。故本研究採用模型參考適應性控制器(Model Reference Adaptive Controller, MRAC),其架構包含前饋控制器、回饋控制器、摩擦力補償及偏差輔助訊號。另外,本文的隨機海浪訊號採用兩種方式產生:一種是使用典型的疊加弦波(Multiple Harmonic);另一種是使用混沌訊號。與固定參數的線性控制器進行比較之後,得知本研究所提之適應性控制器,不論輸入為疊加弦波或混沌訊號時,都可得到較佳的響應性能。
The purpose of this paper is to build a set of simulator for the surface dynamics of the sea combining adaptation law with random wave theory. We use the seven-link motion platform to simulate the dynamics of the roll、heave and pitch on the fixed point above the sea. Because the simulator for the surface dynamics of the sea that is highly complex nonlinear system, therefore the parameter of system is difficult to obtain. In this paper, we use Model Reference Adaptive Controller, its structure includes a feedforward controller, a feedback controller, a compensation of friction and an auxiliary signal. In addition, the random ocean wave signal we use two kinds of methods producing in this paper: one is Multiple harmonic; another is chaotic signal. Compared with the linear controller, we could know the adaptive controller, however the input is multi-harmonic signal or chaotic signal could get better response performance
Chinese Abstract ……………………………………………………….. i
English Abstract ………………………………………………………... ii
Contents ………………………………………………………………... iii
List of Tables ……………………………………………..…………….. iv
List of Figures …………………………………………..……………… v
Chapter 1 Introduction ………………………………………………….. 1
1.1 Research Motive ………………………………………………. 1
1.2 Document Retrospect …………………………………………. 2
Chapter 2 System Structure and Mathematics Modeling ………………. 6
2.1 Describing the Machinery Position …………………...………. 6
2.2 The Workspace ………………………………………………... 9
2.3 Mathematical Model ………………………………………….. 10
Chapter 3 Generation of the Non-regular Wave ………..……………… 17
3.1 Random wave theory …………………………………...…….. 17
3.2 Wave spectrum method ……………………………………….. 17
3.3 Chaotic signal ……………………………………………..…... 20
Chapter 4 Adaptive Controller Design …………………………………. 21
4.1 Structure of Control System …………………………………... 21
4.2 Adaptation Law ……………………………………….……….. 22
Chapter 5 Experiment Results ………………………………………….. 31
5.1 Planning of the moving curve …………………………………. 31
5.2 Experiment Results ……………………………………….…… 32
Chapter 6 Conclusion ………………………………………………….... 35
Reference ………………………………………………………………... 51
[1] Chen, Yung-Hsiang, “Ship Vibrations in Random Seas”, Journal of Ship Research, Vol. 24, No. 3, pp. 156-169, Sept. 1980.
[2] Y. Goda, Random Seas and Design of Maritime Structures, 2nd Edition, World Scientific Publishing Co. Pte. Ltd., 2000.
[3] Se-Han Lee, Jae-Bok Song, Woo-Chun Choi, Daehie Hong, “Position control of a Stewart platform using inverse dynamics control with approximate dynamics”, Mechatronics, Vol. 13, pp. 605-619, 2003.
[4] D. Li, S. E. Salcudean, “Modeling, Simulation, and Control of a Hydraulic Stewart Platform”, Vol. 4, pp. 3360-3366, April 1997.
[5] L. Romdhane, “Design and analysis of a hybrid serial-parallel manipulator”, Mechanism and Machine Theory, Vol. 34, pp. 1037-1055, July. 1998.
[6] S. H. Singh, A. A. Schy, “Control of Elastic Robotic Systems by Nonlinear Inversion and Modal Damping”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 108, September 1986.
[7] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1984
[8] M. Shinozuka, “Simulation of Multivariate and Multidimensional
Random Processes”. The Journal of the Acoustical Society of American, Vol. 49, pp. 357-367, June 1970.
[9] H. T. Cuong, A. W. Troesch, T. G. Birdsall, “The Generation of Digital Random Time Histories”, Ocean Engineering, Vol. 9, No. 6, pp. 581-588, 1982.
[10] S. Rise, “Mathematical analysis of random noise”, Bell System Tech. J, Vol. 23, pp. 282-332, Sept. 1944.
[11] Y. Goda, Random Seas and Design of Maritime Structures, 2nd Edition, World Scientific Publishing Co. Pte. Ltd., 2000.
[12] S. R. Hsieh, A. W. Troesch, S. W. Shaw, “A nonlinear probabilistic method for predicting vessel capsizing in random beam sea”, Proceedings of the Royal Society of London, Series A-446, pp. 1-17, 1994.
[13] T. Kapitaniak, Chaos for Engineers, 2nd Edition, Springer-Verlag, Berlin Heidelberg, 2000.
[14] S. P. Thomas, O. C. Leon, Practical Numerical Algorithms for Chaotic System, Springer-Verlag, New York, 1989.
[15] N. S. Sahjendra, “Adaptive Model Following Control of Nonlinear Robotic Systems”, IEEE, Transactions on Automatic Control, Vol. 30, No. 11, pp. 1099-1100, November, 1985.
[16] K. J. Astrom, B. Wittenmark, Adaptive Control, 2nd Edition, Addison Wesley, 1995.
[17] Y. L. Kye, Mansour Eslami, “Adaptive Controller Designs for Robot Manipulator Systems Using Lyapunov Direct Method”, IEEE, Transactions on Automatic Control, Vol. 30, No. 12, December, 1985.
[18] E. S. Jean Jacques, W. Li, “Applied Nonlinear Control”, International Edition, Pearson Education Taiwan Ltd, 2005.
[19] H. Seraji, “A New Approach to Adaptive Control of Manipulators”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 109, No. 3, September, 1987.
[20] A. Balestrino, G. Demaria, L. Sciavicco, “An Adaptive Model Following Control for Robotic Manipulators”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 105, September, 1983.
[21] S. Dubowsky, D. T. Desforges, “The Application of Model Reference Adaptive Control to Robotic Manipulators”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 101, September, 1979.
[22] R. P. Anex, Jr., M. Hubbard, “Modelling and Adaptive Control of a Mechanical Manipulator”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 106, September, 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top