跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/15 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂仁智
研究生(外文):Jen-Chih Lu
論文名稱:結構設計對於氣動微幫浦製作與幫浦能力的影響
論文名稱(外文):Effect of Structure Design on Fabrication and Performance of a Gas-driven Micropump
指導教授:闕振庚
指導教授(外文):Gen-Ken Chuech
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:66
中文關鍵詞:微幫浦負壓式微機電製程氣動噴射泵
外文關鍵詞:micro pumpnegative-pressureMEMS fabrication processgas ejector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:506
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
摘要
生物晶片上的微總分析系統(μTAS),通常依賴微幫浦來驅動晶片中之流體,進行吸入、混合、反應、分離、以及排出等動作,以完成生化分析的工作。但是在微幫浦方面的研發,過去大多集中於正壓式微幫浦,反而負壓式微幫浦卻少有研究。相對於正壓式微幫浦,負壓式氣動微幫浦可應用於抽真空,尤其本身不需閥片或活動零件,不但可延長壽命,而且具有操作簡單、製程容易的優點。特別是近年來,為了因應生化晶片的大量需求,利用簡單MEMS製程,來製造廉價成本之微幫浦,有其必要性。因此本研究進行有關負壓式氣動微幫浦的設計與製造。
本研究主要利用氣動噴射泵(gas ejector pump)之結構設計與微機電製程,來設計製造微米尺寸之負壓式氣動微幫浦,最後進行測試的實驗工作。在計畫初期,首先利用氣動噴射泵之結構設計,製作Miniscale (cm~dm)尺寸之模型,並測試與分析氣體動力對於流體抽取的能力,作為製造Microscale (μm~mm)尺寸之微幫浦的參考設計。在研究中,有關設計製造Microscale尺寸之負壓式氣動微幫浦,主要用矽晶圓為材料,以MEMS製程來完成。最後進行實驗測試的工作,實驗測試包括:以壓縮空氣為驅動氣體,抽取水及空氣,來測試所製成的負壓式氣動微幫浦之輸出流量的能力。另外,在未來研究中,以不同的擴散器出口尺寸,進行最佳化設計分析,其結果顯示擴散器出口具有一最佳尺寸,可使幫浦能力最大。並建議未來研究可利用微流體學的理論分析,模擬氣動微幫浦在抽取氣體時之內部流場結構,以了解阻氣現象、幫浦出口臨界尺寸,對於微幫浦的內部結構設計與幫浦抽取能力的影響。
關鍵字:微幫浦、負壓式、微機電製程、氣動噴射泵
Abstract
The fluids in bio-chips of micro total analysis systems (μTAS) are relied on micropumps to be inhaled, mixed, reacted, separated, and discharged for analysis purposes. Recent development of the micropump was mostly focused on the type of the positive-pressure. In comparison to positive-pressure micropumps, the negative-pressure micropump is of crucial importance to vacuum applications, but it was not paid attention in the past years. Especially, the negative-pressure micropump needs no moving valves or parts, and the cost for fabrication is relatively low when MEMS manufacturing process is applied. Therefore, the design and fabrication of a negative-pressure micropump driven by gas is essentially needed, and it has been investigated in the present study.
The structure of the gas ejector was utilized for the design of the present negative-pressure micropump. In the present study, there were two types of gas-driven micropumps were designed and fabricated, including mini-scale and micro-scale models. The mini-scale micropump was used as a baseline for the micro-scale model. The micropump was fabricated through MEMS manufacturing processes. To check the pump performance, the fabricated micropump driven by compressed air from a portable can was tested to pump water and air. In the experimental tests, the pumping flow rates of water and air were measured. In order to optimize the design, the width of the diffuser throat in the micropump was varied and used as a design parameter. The optimization results indicate that there should exist an optimal width for the diffuser throat when a gas-driven micropump is designed. For the future study, the theoretical simulations using micro-fluidics is suggested to study the choking phenomenon and the critical size of the pump design.
Key Words: micro pump, negative-pressure, MEMS fabrication process, gas ejector
目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
符號說明 viii
第一章 簡介 1
1-1 前言 1
1-2 製程技術簡介 1
1-3 研究動機 2
1-4 文獻回顧 4
1-5 研究目標 9
第二章 理論方法 11
2-1 負壓式微幫浦的驅動原理與技術 11
2-1-1 負壓驅動原理 11
2-1-2 負壓驅動技術 14
2-2 單晶矽非等向性濕式蝕刻 20
2-2-1 矽的晶體結構 20
2-2-2 蝕刻速率 21
2-2-3 蝕刻終止技術 24
2-3 非等向性濕式蝕刻的影響因素 25
2-3-1 非等向性濕式蝕刻的反應機制 25
2-3-2 蝕刻液 27
第三章 微幫浦之設計製作與實驗方法 29
3-1 Miniscale模型製作與性能分析 29
3-2 Microscale 模型設計 34
3-3 MEMS製程技術 35
3-3-1 光罩設計與製作 35
3-3-2 晶片表面之清潔 36
3-3-3 微影(Photolithography 39
3-4製作Microscale微幫浦成品之製程步驟 41
3-5 氣動微幫浦的能力測試 47
3-5-1 微幫浦抽取液體與氣體的能力 47
3-5-2 改進微幫浦抽取氣體能力 50
第四章 結論與建議 59
4-1 結論 59
4-2 建議 60
參考文獻 61
參考文獻
Feynman, R.,“There's plenty of room at the bottom,” Journal of Micro Electro Mechanical Systems, v 1, 1992, pp. 60-66
Feynman, R., “Infinitesimal machinery,” Journal of Micro Electro Mechanical Systems, v 2, 1993, pp.4-14
Madou, M., Fundamentals of Microfabrication, CRC Press, New York,1997.
Kashani, R., Kang, S., and Hallianan, K. P., “Electro-hydrodynamic pumped hydraulic actuation with application to active vibration control,’ Proceedings of SPIE - The International Society for Optical Engineering, v 3675, 1999, pp. 180-189. Proceedings of the 1999 Smart Structures and Materials on Smart Materials Technologies, Mar 3-Mar 4 1999, Newport Beach, CA, USA.
Kashani, R., Kang, S., and Hallianan, K. P., “Micro-scale electrohydrodynamic pumped high performance actuation,” Journal of Intelligent Material Systems and Structures, v 11, n 5, May 2000, pp. 343-350.
Hsu, T.-R., MEMS & Microsystems Design and Manufacture, Published by McGraw-Hill Company, 2002, pp. 87-90.
Jang J., and Lee S. S., 2000, “ Theoretical and Experimental Study of MHD (magnetohydrodynamic) Micropump,” Sensors and Actuators A, v 80, pp. 84-89.
Soerensen, O.,and Drese, K. S., Ehrfeld, Wolfgang, Hartmann, and Hans-Joachim, “Micromachined flow handling components – micropumps,” Proceedings of SPIE - The International Society for Optical Engineering, v 3857, 1999, Proceedings of the 1999 Chemical Microsensors and Applications II, Sep 19-Sep 20 1999, Boston, MA, USA, pp. 52-60.
Kaemper, K.-P., Doepper, J., Ehrfeld, W., and Oberbeck, S., “Self-filling low-cost membrane micropump,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998, Proceedings of the 1998 IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems, Jan 25-29 1998, Heidelberg, Ger, pp. 432-437.
Guo, S., Nakamura, T., Fukuda, T., and Oguro, K., “Development of the micro pump using ICPF actuator,” Proceedings of IEEE International Conference on Robotics and Automation, ICRA. Part 1 (of 4), v 1, Apr. 20-25 1997, Albuquerque, NM, USA, pp. 266-271.
Guo, S., Nakamura, T., Fukuda, T., and Oguro, Keisuke,”Design and experiments of micro pump using ICPF actuator,” Proceedings of the International Symposium on Micro Machine and Human Science, Oct 2-4 1996, Nagoya, Japan, pp. 235-240.
Hartley, F. T., “Miniature peristaltic pump technology and applications,” Journal of Advanced Materials, v 32, n 3, Jul, 2000, pp. 16-22.
Wong, C. C., Adkins, D. R., Chu, D., “Development of a micropump for microelectronic cooling,” American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, v 59, 1996, Micro-Electro-Mechanical Systems (MEMS), Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition, Nov 17-22 1996, Atlanta, GA, USA, pp. 239-244.
Polla, D. L., “MEMS technology for biomedical applications," Proceeding of 6th International Conference, v 1 , 2001, pp. 19 –22.
Varadan, V. K., Varadan, V. V., “Micro pump and venous valve by Micro Stereo Lithography,” Proceedings of SPIE - The International Society for Optical Engineering, v3990, 2000, pp. 246-254. Smart Structures and Materials 2000 - Smart Electronics and MEMS, Mar 6-Mar 8 2000, Newport Beach, CA, USA.
Skardon, J., “Applications for new micro-miniature gear pump featuring meso-scale components,” Instrumentation in the Aerospace Industry : Proceedings of the International Symposium, v 44, 1998, pp. 674-679. May 3-7, 1998, Reno, NV, USA.
Mehra, A., Ayon, A. A., Waitz, I. A., and Schmidt, M. A., “Microfabrication of high-temperature silicon devices using wafer bonding and deep reactive ion etching,” Journal of Microelectromechanical Systems, v 8, Issue 2 , June 1999, pp. 152 –160.
Kowalski, G. J., “Improving turbine performance by cooling inlet air using a waste heat powered ejector refrigerator,” American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES, v 36, 1996, pp. 501-508. Proceedings of the ASME Advanced Energy Systems Division, Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition, Nov 17-22, 1996, Atlanta, GA, USA.
Ameel, T. A., Warrington, R. O., Wegeng, R. S., and Drost, M. K., “Miniaturization technologies applied to energy systems,” Energy Conversion and Management, v 38, n 10-13, Jul-Sep, 1997, Proceedings of the 1995 International Symposium on Advanced Energy Conversion Systems and Related Technologies, RAN, Dec 4-6 1995, Nagoya, Japan, pp. 969-982.
Van Lintel, H. T. V., Van de Pol, F. C. M., and Bouwstra, A., “Piezoelectric Micropump Based on Micromaching of Silicon,” Sensors and Actuators, v 15, pp.153-167.
Zenger, R., Richter, M., and Sandmaier, H., 1992, “A Micro membrane pump with electrostatic actuation,” Proceeding of IEEE Micro Electro Mechanical Systems Workshop, Travemunde, Germany, 1992, pp. 19-24.
Zengerle, R., and Ulrich, J.,“ A bi-directional silicon micropump,” Sensors and Actuators A, Vol. 50, 1995, pp. 81-86.
Xu, Dond, and Wang, Li, “ Characteristics and fabrication of NiTi╱Si diaphragm micropump,” Sensors and Actuators A, v 93, 2001, pp. 87-92.
Jeong, O,C., and Yang, S. S., “ Fabrication and test of a ahermopneumatic micropump with a corrugated p+ Diaphragm,”Sensors and Actuators A, v 83, 2000, pp. 249-255.
Quake S., and Scherer A., “From micro- to nanofabrication with soft materials,” Science ,Vol. 290, 2000, pp.1536-1540.
Spencer J. G.,“Piezoelectric micropump with three valves working peristaltically,” Sensor and Actuators A, v 21-23, 1990 pp. 203-206.
Bart, S. F., Tavrow, L. S., Mehregany, M., and Lang, J., “Microfabricated electrohydrodynamic pumps,” Sensors and Actuators, v A21-A23, 1990, pp. 193-197.
Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seller, K., and Fluri, K., “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems,” Journal of Micromechanics and Micro Engineering, v 4, 1994, pp. 257-265.
Zanzucchi, P. J., McBride, S. E., Burton Charlotte A., and Cherukuri Satyam C., “Apparatus and methods for controlling fluid flow in microchannels,” Patent No.US5632876, Publication Date May 27,1997.
Kovacs, G. T. A., “Micromachined transducers sourcebook,” McGraw-Hill, New York, 1998.
Li, Paul C. H., and Harrison, J. D., “Transport, manipulation and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem., v 69, 1997, pp.154-158.
Lofdahl, L., and Gad-el-Hak, M., “MEMS applications in turbulence and flow control,” Progress in Aerospace Sciences, v 35, n 2, Feb, 1999, pp. 101-203.
Zhao, Y., Tai, J., and Ahmed, F., “Simulation of micro flows with moving boundaries using high-order upwind FV method on unstructured grids,” Computational Mechanics, v 28, n 1, February , 2001.
Brody, J. P., “Valveless Liquid Microswitch,” United States Patent US 5,726,604, March 10, 1998.
Yao, N. K., Wan, Y. M., Chen, C. C., Hung, L. Y., and Wang, S.H ,“Apparatus and Method for Driving a Microflow,” United States Patent US 6,192,939 B1, Feb. 27, 2001
Jen, C. P., and Lin, Y. C., “Design and simulation of bi-directional microfluid driving systems,” Journal of Micromechanics and Microengineering, v 12, No.2,March 2002, pp. 115-121.
鍾永強, 吳得群, 郭遠峰, 黃士豪, “氣動式微流體驅動裝置及方法,”中華民國專利, 第30 卷第12 期, 專利證號177168I.
鍾震桂, 張為傑, 蕭价伶, 翁國曜, “微流體導引裝置,”中華民國專利, 第29 卷第30 期, 專利證號166879I.
Donald A. N., Semiconductor Physics and Devices, McGraw-Hill Higher Education,New York 2003.
Walter L., “Silicon microstructuring technology”, Materials science and engineering, R17, 1996, pp. 1-55.
Lee D. B., “Anisotropic etching of silicon “, Journal of Applied physics, Vol. 40, No. 11, 1969, pp. 4569-4574.
Hesketh P. J., Ju C., and Gowda S., “Surface free energy model of silicon anisotropic etching”, J. Electrochem. Soc., v 140, n 4, 1993, pp. 1080-1084.
Seidel H., Csepregi L., Heuberger A., and Baumgartel H., “Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer”, J. Electrochem. Soc., v 137, n 11, 1990, pp. 3612-3626.
Seidel H., Csepregi L., Heuberger A., and Baumgartel H., “Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants”, J. Electrochem. Soc., v 137, n 11, 1990, pp. 3626-3632.
Ciarlo D. R., “Corner compensation structures for (110) oriented silicon”, IEEE Micro Robots and Teleoperators Workshop, 1987, pp. 6/1-4.
Fang W., and Wickert J. A.,“Comments on measuring thin-film stresses using bi-layer micromachined beams”, Journal of Micromechanical and Microengineering, v 5, 1996, pp. 276-281.
Klein J., Guckel H., Siddons D. P., Johnson E. D., “X-ray masks for very deep X-ray lithography”, Microsystem Technologies 4, 1998, pp. 70-73.
Palik E. D., Bermudez V. M., and Glembocki O. J., “Ellipsometric study of the etch-stop mechanism in heavily doped silicon”, J. Electrochem. Soc., 1985, pp. 135-141.
Palik E. D., Glembocki O. J., Heard I., Burno P. S., Tenerz L., “Etching roughness for (100) silicon surfaces in aqueous KOH”, J. Appl. Phys .v 70, n 6, 1991, pp. 3291-3300.
莊達人, VLSI製造技術, 高立圖書有限公司.
Baum T., Schiffrin D. J., “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications”, J. Micromech. Microeng. Number 4, 1997, pp. 338-342.
Tan S. S., Reed M. L., Han H., Boudreau R., “Mechanisms of etch hillock formation”, J. Micro Electro Mechanical Systems, v 5, n 1, 1996, pp. 66-72.
Bhatnagar Y. K., and Nathan A., “ On pyramidal protrusions in anisotropic etching of <100> silicon”, Sensors and Actuators A, v A36, 1993, pp. 233-240.
Choi W. K., Luo J. T. L., Tan P., Chua C. M., and Bai Y., “Characterisation of pyramid formation arising from the TMAH etching of silicon”, Sensors and Actuators A, v A71, 1998, pp. 238-243.
Landsberger L. M., Naseh S., Kahrizi M., and Paranjape M., “On hillocks generated during anisotropic etching of Si in TMAH”, Journal of Microelectromechanical System, v 5, n 2, 1996, pp. 106-116.
Tabata O., “PH-controlled TMAH etchants for silicon micromaching”, Transducers , 1995, pp. 83-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top