跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳慶國
研究生(外文):Ching-Guo Wu
論文名稱:以溫度混合方式評估被動式微混合器性能之數值研究
指導教授:田華忠田華忠引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:85
中文關鍵詞:微機電實驗室晶片微混合器擴散作用雷諾數
外文關鍵詞:MEMSμTASmicromixerdiffusionReynolds number
相關次數:
  • 被引用被引用:1
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微機電結合微流體技術應用於生醫領域目前極受矚目的研究方向就是實驗室晶片(μTAS)的開發與應用。此技術是將一般生化實驗室的設備與作業流程藉MEMS製程,配合微流體力學、生化、控制等其他相關技術縮小在一片晶片上。在晶片實驗室內,生化反應過程之前處理或全程分析過程當中,藥物或樣本快速而有效之混合是非常重要之階段。本文列舉四種微混合器設計(T字型、蜿蜒型、類Z字型以及菱形型流道),藉不同溫度流體之混合過程中,以數值模擬方式針對此四種微混合器,設計不同之初始條件,分析其出口溫度分佈、停滯時間以及回流強度,以評估其混合表現。
結果顯示,低雷諾數時因流體動量不足,流道之幾何構形無法提供足夠回流強度,由擴散機制主導混合,不過流體因低流速延長停滯時間,使擴散作用完全,混合成效不錯。在高雷諾數時可以增加回流強度而由對流作用主導以加速混合,不過流體因高流速而加快往下游行進,大幅縮短混合時間,成效不如預期,必須加長回流循環區段才能改善。T字型流道由於構形簡單,無法產生回流效應,改善效果並不明顯。
以往文獻多以分子濃度或莫耳數來量化混合表現,本文是以溫度為評量標準。由於分子擴散係數與熱擴散係數不同,故模擬結果之數據與文獻有些差距(低雷諾數時較大,但隨著雷諾數增高其差距逐漸拉近),而在雷諾數140時模擬結果之數據與文獻已幾乎相同。
Research and development of “lab on a chip (LOC or μTAS)” has become a promising field in bio-medicine industry recently. Basically, a μTAS is fabricated by miniaturizing the experimental equipments in laboratories and integrating the testing procedures in a chip. This field combines MEMS with many other technologies such as microfluidics, bio chemistry, system control, etc. Effective mixing of fluids is crucial during the process of enzyme reaction or total analysis in the chip.
Four kinds of passive micromixers are designed and numerically analyzed in this study, namely, T type, square wave type, zigzag type, and the diamond type. The performance of the mixers is evaluated by examining the mixing temperatures of two fluids. The results presented include the temperature distributions, the residence time, and the intensity of backflows.
It is shown that at low Reynolds numbers, mixing mainly relies on diffusion. This is because the fluids lack sufficient momentum to generate strong backflows for all four types of mixers. However, the mixing efficiencies are satisfactory due to relatively long residence times caused by low velocities. On the other hand, the performance of these four mixers at high Reynolds numbers is not as good as expected despite strong backflows appearing in most of the mixers except the T type. It is due to short residence times under high velocity conditions. By increasing the length of recirculation zone, the mixing efficiency can be improved significantly. Nevertheless, such improvement is limited for the T type mixer due to its simple structure.
In most studies, mixing performance was quantified in terms of number of molecules or concentrations. Because the molecular diffusion coefficient is different from the thermal diffusion coefficient, there is some discrepancy between current results and literature. Specifically, the difference is large at low Reynolds numbers while it is reduced at high Reynolds numbers. For a Reynolds number of 140, the results obtained from present study are quite close to the experimental work in the literature.
摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xii
第一章 緒論 1
1.1前言 1
1.1.1積體電路緣起 1
1.1.2微機電系統發展與應用 3
1.2研究背景與動機 8
第二章 文獻回顧 11
2.1微混合觀點 11
2.2微混合器的分類 11
2.2.1主動式混合器 12
2.2.2被動式混合器 16
2.3混合成效指數 24
2.3.1定性化分析 25
2.3.2定量化分析 26
第三章 數值理論 29
3.1前言 29
3.2基本假設 29
3.3統御方程式 30
3.4混合效率定義 31
3.5數值模擬 32
3.5.1背景 32
3.5.2數值方法 33
3.5.3模擬軟體簡介 34
第四章 物理模型暨邊界條件 36
4.1前言 36
4.2物理模型及其邊界/初始條件 37
4.2.1混合器流道外觀及尺寸: 37
4.2.2混合器解析區域之邊界條件 39
4.2.3混合器解析區域之起始條件 44
第五章 結果與討論 46
5.1模擬可靠性評估 46
5.1.1網格建立 46
5.1.2格點測試 47
5.2數值模擬結果 50
5.2.1 T字型混合器 50
5.2.2蜿蜒型混合器 54
5.2.3類Z字型混合器 58
5.2.4菱形混合器 62
5.3綜合分析及討論 66
5.3.1雷諾數與流道幾何外型對混合之影響 66
5.3.2對流與擴散過程 67
5.3.3停滯時間的影響 73
5.4與文獻比較 74
第六章 結論及展望 79
6.1結論 79
6.2未來展望 80
參考文獻 82
1.H. Chat’e, E. Villermaux, and J. M. Chomaz, Mixing: chaos and turbulence. NATO ASI, Series B, Physics, vol. 373. New York: Kluwer/Plenum 1999.
2.F. Tay, Microfluidics and bioMEMS applications. Kluwer 2002.
3.P. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, Micro total analysis systems. II. Analytical standard operations and applications. Analyt. Chem. 74, 2637–2652, 2002.
4.Hong Xiao著,羅正忠、張鼎張譯,半導體製程技術導論,歐亞書局94年1月。
5.K. Peterson, Silicon as a mechanical material Proc.IEEE 70 420-57, 1982.
6.陳炳輝,『微機電系統』。初版。五南出版公司,2001年9月。
7.J. Pihl, M. Karlsson, and D. T. Chiu, Microfluid Technologies in Drug discovery, DDT • Volume 10, Number 20 • October 2005.
8.W. Ferstl, S. Loebbecke, J. Antes, H. Krause, M. Haeberl, D. Schmalz, H. Muntermann, M. Grund, A. Steckenborn, A. Lohf, J. Hassel, T. Bayer, M. Kinzl, and I. Leipprand, Development of an automated microreaction system with integrated sensorics for process screening and production, Chemical Engineering Journal 101 (2004) 431–438.
9.S.Y. Cheng著, Cell Form and Function, 海洋大學環境生物及養殖學系,94年10月。
10.王少君,第二代生物晶片:微流體晶片與蛋白質晶片, 科學發展2003年9月,369期。
11.D.R. Reyes, D. Iossifidis, P.A. Auroux, and A. Manz, Micro Total Analysis Systems – Introduction, Theory, and Technology. Analytical Chemistry. 24: 2637-2652, 2002.
12.C.Y. Lee, G.B. Lee, J.L. Lin, F.C. Huang, and C.S. Liao, Integrated microfluidic systems forcell lysis mixing, /pumping and DNA amplification, J. Micromech. Microeng. 15 (2005) 1215–1223.
13.R.M. Guijt, A. Dodge, G. W. K. van Dedem, N. F. de Rooija, and E. Verpoorte, Chemical and physical processes for integrated temperature control in microfluidic devices, Lab Chip, 2003, 3, 1–4, Royal Society of Chemistry 2003.
14.P. Graveson, J. Branjeberg, and O.S Jensen,.Microfluidics—a review. Journal of Micromechanics and Microengineering 3 (4), 168–182, 1993.
15.J.M. Ottino, The Kinematics of Mixing Stretching, Chaos, and Transport. Cambridge University Press, Cambridge, 1989.
16.Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, Ultrasonic micromixer for microfluidic systems , Sensor and Actuator A93 266-272, 2001.
17.J. Suzuki, and C. Ho, A magnetic force driven chaotic micro- mixer. In IEEE Proc. MEMS 2002, pp. 40–43. Piscataway, NJ: IEEE.
18.M.H. Oddy, J.G. Santiago, and J.C. Mikkelsen, Electrokinetic Instability Micromixing, Analytical Chemistry. Vol. 73, No. 24, 5822-5832, 2001.
19.J. West, B. Karamata, B. Lillis, J.P. Gleeson, J. Alderman, J.K. Collins, W. Lane, A. Mathewson, and H. Berney, Application of magnetohydrodynamic actuation to continuous flow chemistry , Lab Chip, 2002, 2, 224–230, Royal Society of Chemistry 2002.
20.N.T. Nguyen and Z. Wu, Micromixers—a review, Journal of Micromechanics and Microengineering, 0960-1317, 2005.
21.R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, and G. Whitesides, Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels, Appl. Phys. Lett., Vol. 76, No. 17, 24 April 2000.
22.S.H. Wong, M.C.L., Ward, and C.W. Wharton, Micro T-mixer as a rapid mixing micromixer, Sensors and Actuators B 100 (2004) 359–379.
23.S.H. Wong, P. Bryant, M. Ward, and C. Wharton, Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies, Sensors and Actuators B 95 (2003) 414–424.
24.J.B. Knight, Hydrodynamic focussing on a silicon chip: mixing nanoliters in microseconds. Physical Review Letters 80 (17), 3863, 1998.
25.Y. YamaguchI, K. Ogino, K. Yamashita, and H. Maeda, Rapid Micromixing Based on Multilayer Laminar Flows, Journal of Chemical Engineering of Japan, Vol. 37, No. 10, pp. 1265–1270, 2004.
26.P. Löb, H. Pennemann, and V. Hessel, g/l-Dispersion in interdigital micromixers with different mixing chamber geometries, Chemical Engineering Journal 101 (2004) 75–85.
27.Y. Lin, Ultrafast microfluidic mixer and freeze–quenching device Anal. Chem. 75 5381–6, 2003.
28.V. Mengeaud, J. Josserand, and H. H. Girault, Mixing processes in a zigzag microchannel: finite element simulation and optical study Anal. Chem. 74 4279–86, 2002.
29.R.H. Liu, M. A. Stremler, , K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, Passive Mixing in a Three- Dimensional Serpentine Microchannel, Journal of Microelectromechanical Systems, Vol. 9, No.2, June 2000.
30.S.J. Park, J. K. Kim, J. Park, S. Chung, C. Chung, and J. K. Chang, Rapid three-omensional passive rotation micromixer using the breakup process, J. Micromech. Microeng. 14(2004) 6-14.
31.M. Yi, H.H. Bau/ Int. J.,The kinematics of bend-induced mixing in micro-conduits, Heat and Fluid Flow 24 (2003) 645–656.
32.T. J. Johnson, D. Ross, and L .E. Locascio, Rapid microfluidic mixing Anal. Chem. 74 45–51, 2002.
33.A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, and G.M. Whitesides, Chaotic mixer for microchannels Science 295 647–51, 2002.
34.T.G. Kang, and. T.H. Kwon, Colored particle particle tracking method formixing analysis of chaotic micromixers, Journal of Micromechanics and Microengineering, vol. 14, pp. 891-899, 2004.
35.M. Koch, Improved characterization technique for micromixers J. Micromech. Microeng. 9 156–8, 1999.
36.J.H. Kim, B.G. Kim, H. Nam, D.E. Park, K.S. Yun, J.B. Yoon, J. You, and E. Yoon, A disposable DNA sample preparation microfluidic chip for nucleic acid probe assay. In: Proc. IEEE MEMS, Las Vegas, USA, p.133, 2002.
37.Y. Tang, J. Wu, E. Czyzewska, and K. Stanley, An Optimized Micromixer with Patterned Grooves, International Conference on MEMS, NANO and Smart Systems, 0-7695-2189- 4/04/2004 IEEE.
38.P. Chiarot, R.B. Mrad, and P. Sullivan, A Study of Passive Micro-fluidic Mixers, 2004 International Conference on MEMS, NANO and Smart Systems 0-7695-2189-4/04/2004 IEEE.
39.Y.Z. Liu, B.J. Kim, and H.J. Sung, Two-fluid mixing in a micro channel, International Journal of Heat and Fluid Flow 25 (2004) 986–995.
40.S.V. Patankar, D.B. Spalding, “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flow," Int. J. Heat Mass Transfer, Vol.15, pp. 1787-1806, 1972.
41.J.P. Van Doormaal, G.D. Raithby, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, Vol.7, pp.147-163, 1984.
42.Coordinate Systems in User Guide, Flow 3D Version8.2.
43.W. Ehrfeld, H. Lowe, and V. Hessel, Microreactors: new technology for modern chemistry, 1st edn. Wiley-VCH, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top