跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇哲毅
研究生(外文):Che-I Devin Su
論文名稱:X光反射與繞射式干涉光學元件之設計與製作及其應用於X光顯微鏡
論文名稱(外文):The Design and Fabrication of X-Ray Reflective and Diffractive Interference Optical Device and Their Application in X-Ray Microscopy
指導教授:胡宇光胡宇光引用關係
指導教授(外文):Yeukuang Hwu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:157
中文關鍵詞:同步輻射X光洛伊鏡菲涅爾波帶片放射治療X光顯微術
外文關鍵詞:Synchrotron RadiationLloyd's MirrorFresnel Zone PlateRadiotherapyX-ray Microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藉由整合X光顯微術及半導體製程技術,本論文將探討兩種主要以干涉現象為理論基礎的X光聚焦技術及其相關研究:其一係為藉由極簡單的光學架構 – 洛伊鏡(Lloyd’s Mirror),來探討一種以波前分割和反射光學為理論基礎的干涉儀,及其於X光波段之研究;此外,藉由近乎工藝極限的半導體製程技術製作一種以相位移和繞射光學為理論基礎的聚焦元件 – 菲涅爾波帶片(Fresnel Zone Plate),並更進一步將其應用於同步輻射及其相關研究。

經由實驗,我們發現上述二種元件的幾項主要特色:一、不論是在硬白X光或是單色X光的光源下,利用洛伊鏡所得的干涉條紋的強度,與入射光相比之下,皆有相當程度的增加與放大。二、藉由X光顯微技術,經由洛伊鏡而得到的干涉條紋不僅提供了一種簡單的光源檢測方法,也可能發展成一種新的材料分析技術。三、在製作菲涅爾波帶片的過程中,提供支撐主體結構的氮化物薄膜及後製所需的金屬導電層,其品質與厚度都將對成品的聚焦效率有著直接且相當程度的影響;除此之外,菲涅爾波帶片主體結構的設計與厚度,亦是對聚焦效率有著關鍵性的決定。
Base on the interference optics and with the integrated x-ray microscopy and the state-of-the-art nanofabrication techniques, we present the results of a synchrotron radiation study of the relevant technology of focusing x-rays; one is the Lloyd’s mirror, a reflective optics based wavefront splitting interferometer; and another is the Fresnel zone plate, a focusing device based on both phase shift theory and diffractive optics.

In this thesis, we demonstrate a practical and simple approach to implement the Lloyd’s mirror system and characterized their performance in focusing hard-x-rays and the possibility of using this system as tool for materials characterization. We found that the peak intensity of the interference fringes were significantly increased from its respective incident beam after passing through a Lloyd’s mirror independent from the monochromaticity of the hard x-rays or monochromatic x-rays. This make these devices particularly suitable for focusing of nonmonochrmatic x-rays. Second, with an simple high resolution x-ray microscope, the Lloyd’s mirror provides a simple inspection method of the characteristics of the x-ray beam, such as the source size, the divergence and therefore the coherence of the source which is otherwise difficult to measure. The Lloyd’s mirror used with hard x-rays is very sensitive to the surface quality which leads to the possibility to use it to examine the surface quality.

With the advance nanofabrication, we also successfully provide extremely high quality Frensnel zone plate for multi-keV hard x-rays capable of focusing or imaging x-rays down to 30nm. During the fabrication process, we found that both the nitride membrane, which provided the whole structure a free standing interface, and the metal membrane, which provided the electroplating a conductive layer in our fabrication processes, their quality and thickness directly influences the focusing efficiency of end products. In addition, the design and the thickness of Fresnel zone plate structure play a very important role to the focusing efficiency of this device.
ABSTRACT

ACKNOWLEDGEMENT

CHAPTER 1 INTRODUCTION
1.1 WHY X-RAY IMAGING IS INTERESTED?
1.2 WHY X-RAY FOCUSING OPTICS IS INTERESTED?
1.3 WHY INTERFERENCE?

CHAPTER 2 INTERFERENCE
2.1 REVIEWS OF INTERFERENCE
2.1.1 INTRODUCTIONS
2.1.2 CONDITIONS TO INTERFERENCE
2.2 REVIEWS OF YOUNG’S DOUBLE SLIT EXPERIMENT
2.2.1 INTRODUCTIONS
2.2.2 GEOMETRY CALCULATIONS

CHAPTER 3 REFLECTIVE METHOD: LLOYD’S MIRROR
3.1 REVIEWS
3.1.1 WAVEFRONT SPLITTING INTERFEROMETER
3.1.2 LLOYD’S MIRROR
3.2 SIMULATIONS
3.2.1 GEOMETRY CALCULATIONS
3.2.2 RAY TRACING
3.3 EXPERIMENTS
3.4 RESULTS AND DISCUSSIONS
3.4.1 WHITE SOURCE OF HARD X-RAYS
3.4.2 SLIT SOURCE OF HARD X-RAYS
3.4.3 MONOCHROMATIC SOURCE OF HARD X-RAYS
3.4.4 CASE OF THE BENT REFLECTIVE SURFACE
3.4.5 OTHER CONSIDERATIONS
3.5 CONCLUSIONS AND APPLICATIONS

CHAPTER 4 DIFFRACTIVE METHOD: FRESNEL ZONE PLATE
4.1 REVIEWS
4.1.1 DIFFRACTION
4.1.2 ZONE PLATE LENS
4.2 SIMULATIONS
4.3 FABRICATIONS
4.4 RESULTS AND DISCUSSIONS
4.4.1 FIRST ACHIEVEMENTS
4.4.2 THERMAL EFFECT ON SYNCHROTRON RADIATION
4.4.3 THICKNESS OF MEMBRANE
4.5 CONCLUSIONS AND APPLICATIONS

CHAPTER 5 FUTURE WORK
5.1 OUTLOOKS
5.1.1 LLOYD’S MIRROR
5.1.2 FRESNEL ZONE PLATE

APPENDIX A SYNCHROTRON RADIATION
A.1 WHAT IS SYNCHROTRON RADIATION?
A.2 PROPERTIES OF SYNCHROTRON RADIATION
A.3 INTRODUCTION OF BEAMLINES
A.3.1 NSRRC BEAMLINE 01A: SWLS X-RAY WHITE LIGHT
A.3.2 NSRRC BEAMLINE 01B: SWLS X-RAY MICROSCOPY
A.3.3 PLS BEAMLINE 7B2: X-RAY MICROSCOPY
A.3.4 NSRRC BEAMLINE 18B: MICROMACHINING
A.3.5 NSRRC BEAMLINE 19A: LITHOGRAPHY

APPENDIX B X-RAY IMAGING
B.1 REVIEWS OF X-RAY IMAGING
B.2 REVIEWS OF X-RAY MICROSCOPY
B.2.1 GENERAL REVIEWS
B.2.2 OUR SETUP

APPENDIX C FOCUSED ATTENUATION
C.1 INTRODUCTION
C.2 SIMULATIONS
C.3 CONCLUSIONS

REFERENCES

TABLE LIST

FIGURE LIST
[1] R. Meuli, Y. Hwu, J.H. Je and G. Margaritondo: “Synchrotron Radiation in Radiology - Part II: Radiology Techniques Based on Synchrotron Sources”, European Journal of Radiology, vol.14, p.1550-1560, 2004.

[2] G. Margaritondo: “Elements of Synchrotron Light: for Biology, Chemistry, & Medical Research”, Oxford University Press, 2002.

[3] W.B. Yun, “X-ray Computed Tomography for Life Science”, invited talk, Second Joint Taiwanese-Swiss workshop on nanotechnology, 2005, Taiwan, R.O.C..

[4] Y.C. Yang, C.H. Wang, Y. Hwu, C.H. Chen, J.H. Je, and G. Margaritondo, “X-Ray-Induced Gold Nanoparticle Precipitation from Aqueous Solution”, conference reviews, SRI 2006, Korea.

[5] P.Y. Tseng, Y.T. Shih, Y. Hwu, K.S. Liang, J.H. Je, and G. Margaritondo, “Development of Cell Staining Technique for X-Ray Microscopy”, conference reviews, SRI 2006, Korea.

[6] C.C. Chien, C.H. Wang, P.Y. Tseng, T.Y. Yang, Y. Hwu, and G. Margaritondo, “Synchrotron X-ray Synthesized Gold Nanoparticles for Tumor Therapy”, conference reviews, SRI 2006, Korea.

[7] F.A. Jenkins and H.E. White: “Fundamentals of Optics”, fourth edition, McGraw-Hill Inc, 1981.

[8] G.R. Fowles: “Introduction to Modern Optics”, second edition, Holt, Rinehart and Winston Inc, 1975.

[9] E. Hecht: “Optics”, fourth edition, Addison Wesley, 2002.

[10] O. Chubar, “Novel Applications of Optical Diagnostics”, Proceedings of EPAC 2000, Vienna, Austria.

[11] A. Andersson, M. Eriksson, and O. Chubar, “Beam Profile Measurements with Visible Synchrotron Light on MAX-II”, Proceeding of EPAC, vol.96, p.1689.

[12] O. Chubar, P. Elleaume, and A. Snigirev, “Phase Analysis and Focusing of Synchrotron Radiation”, Nucl. Instr. and Meth., vol.A435, p.495, 1999.

[13] B.E. Allman, A.G. Klein, K.A. Nugent, and G.I. Opat, “Lloyd’s Mirage: A Variant of Lloyd’s Mirror”, Eur. J. Phys., vol.14, p.272-276, 1993.

[14] O. Chubar, A. Snigirev, S. Kuznetsov, T. Weitkamp, and V. Kohn, “X-Ray Interference Methods of Electron Beam Diagnostics”, Proceedings DIPAC 2001, ESRF, Grenoble, France.

[15] G. Hildebrandt and H. Bradaczek, “Approaching Real X-Ray Optics”, contributed papers, The Rigaku Journal, vol.17, num.1, 2000.

[16] M. Born and E. Wolf: “Principles of Optics: Electromagnetic Theory of Propagation Interference and Diffraction of Light”, sixth edition, Pergamon Press, 1980.

[17] Y. Hwu, W.L. Tsai, J.H. Je, and G. Margaritondo, “New Method of Focusing Broadband X-Ray with Lloyd’s Mirror Arrangement”, unpublished result.

[18] D. Attwood: “Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications”, Cambridge University Press, 1999.

[19] C. Bergemann, H. Keymeulen, and J.F. van deer Veen, “Focusing X-ray Beams to Nanometer Dimensions”, Physical Review Letter, vol.91, num.20, 2003.

[20] 羅正忠, 張鼎張, “半導體製程技術導論”, 第二版, 台灣培生教育出版股份有限公司, 2005.

[21] W. Chao, B.D. Harteneck, J.A. Liddle, E.H. Anderson, and D.T. Attwood, “Soft X-ray Microscopy at A Spatial Resolution Better Than 15nm”, Nature, vol.435, 2005.

[22] I.K. Lin, C.I. Su, Y.T. Chen, W.T. Chang, T.Y. Lai, H.J. Wu, Y.H. Tsai, and B.Y. Shew, Y.K. Hwu, “Using X-Ray Lithography to Fabricate Zone Plate Lens”, conference reviews, NSRRC Eleventh Users’ Meeting and Workshops, Oct 2005, R.O.C..

[23] I.K. Lin, Y. Hwu, Y.T. Chen, C.I. Su, W.T. Chung, T.Y. Lai, H.J. Wu, “Using X-Ray Lithography to Fabricate Zone Plate”, conference reviews, SRI 2006, Korea.

[24] I.K. Lin, T.Y. Yang, C.H. Wang, Y. Hwu, C.D. Chen, Y.T. Chen, C.I. Su, “Evaluation of KMPR Etching Processes for Fabrication of High Resolution Hard X-Ray Zone Plates”, conference reviews, SRI 2006, Korea.

[25] NSRRC, http://www.nsrrc.org.tw/.

[26] Y.F. Song, C.H. Chang, C.Y. Liu, L.J. Huang, S.H. Chang, J.M. Chuang, S.C. Chung, P.C. Tseng, J.F. Lee, K.L. Tsang, and K.S. Liang, “X-ray Beamlines on a Superconducting Wavelength Shifter”, SRI2003.

[27] G.C. Yin, F.R. Chen, A. Pyun, J.H. Je, Y. Hwu, and K.S. Liang, “Phase Tomography Reconstructed by 3D TIE in Hard X-ray Microscopy”, conference reviews, SRI 2006, Korea.

[28] B.Y. Shew, H.C. Li, C.L. Pan, and C.H. Ko, “X-ray micromachining SU-8 resist for a terahertz photonic filter”, Journal of Applied Physics D: Applied Physics, vol.38, p.1097–1103, 2005.

[29] P.Y. Tseng, T.Y. Yang, C.H. Wang, Y.T. Shih, H.W. Liou, C.C. Chien, I.K. Lin, Y.T. Chen, W.T. Chang, C.I. Su, and Y. Hwu, G.C. Yin, M.T. Tang, K.S. Liang, F.R. Chen, W.B. Yun, H.I. Yeh, J.H. Je, G. Margaritondo, “High Resolution X-Ray Imaging of Live Animals”, conference reviews, NSRRC Eleventh Users’ Meeting and Workshops, Oct 2005, R.O.C..

[30] J.T. Kim, S.K. Seol, J.H. Je, Y. Hwu, and G. Margaritondo, “Study on Formation of Conducting Polymer Microcontainers by Real-Time X-ray Microradiography”, conference reviews, SRI 2006, Korea.

[31] Pallab Bhattacharya: “Semiconductor Optoelectronic Devices”, second edition, 2004, Pearson Education Taiwan Ltd..

[32] S. Twomey and H.B. Howell, “The Relative Merit of White and Monochromatic Light for the Determination of Visibility by Backscattering Measurements”, Applied Optics, vol.4, no.4, 1965.

[33] N.D. Selby and J.H. Woodhouse, “Controls on Rayleigh Wave Amplitudes: Attenuation and Focusing”, Geophys. J. Int., vol.142, p.933-940, 2000.

[34] F.N. Chukhovskii, W.Z. Chang, and E. Farster, “X-ray Focusing Optics. 1. Applications of Wave Optics to Doubly Curved Crystals with A Point X-Ray Source”, J. Appl. Phys. vol.77, num.5, p.1, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top