一、中文部份
1.王倩茵,金控公司市場風險值之研究,台灣大學商學研究所碩士論文,民國92年。2.沈大白、柯瓊鳳、鄒武哲,風險值衡量模式之探討—以台灣上市公司權並證券為例,東吳經濟學報,第二十二期,民國87年。
3.林保霖,增進蒙地卡羅模擬法評估風險值之績效研究,台北大學企業管理學系碩士論文,民國91年。4.翁勝彬,認購權證發行人市場風險衡量與評估,東吳大學經濟系碩士論文,民國87年。5.陳宜玫,風險值估測模型之研究:以台灣股票市場為例,義守大學管理科學研究所碩士論文,民國89年。6.陳嘉明,應用遺傳演化模糊類神經網路於風險管理之研究,東吳大學經濟系碩士論文,民國93年。7.張簡彰程,增進模擬法估計風險值之績效研究—以台股票市場為例,義守大管理科學研究所碩士論文,民國90年。8.萬文隆,兩岸三地連動之研究-狀態空間模型之應用,證券櫃檯月刊,民國91年4月,頁48-65。
9.劉興唐,國際股市連動效應之實證研究,國立中興大學企業管理研究所碩士論文,民國87年。二、西文部分
1.Akaike, H., Canonical Correlations Analysis of Time Series and the Use of an Information Criterion, Academic Press, New York, 1976.
2.Alexander, C.O., and Leigh, C. T., “On the Covariance Metrices Used in Value at Risk Models”, The Journal of Derivatives, Spring, 1997, pp. 50-62.
3.Backman, Daniel, Choi Jongmoo, Jay, Jeon Bang, Nam, and Kopecky Kenneth, J., “Common Factor in International Stock Prices: Evidence from a Cointegration Study”, International Review of Financial Analysis, Vol. 5, 1996, pp.39-53.
4.Beder Ts., S., “VaR: Seductive but Dangerous”, Financial Analysts Journal, Vol.51, Sep/Oct 1995, pp. 12-24.
5.Berndt, E. K., Hall, B.H., Hall, R.E., and Hausman, J.A., “Estimation and Inference In Nonlinear Structural Model”, Annals of Economic and Social Measurement, Vol.34, 1974, pp.653-665.
6.Bollerslev, T., “Generalized Autoregressive Conditional hetreoscedasticity”, Journal of Econometrics, Vol. 31, 1986, pp. 307-327.
7.Boyle, P., ”Options: A Monte Carlo Approach”, Journal of Financial Economics, Vol.4, 1977, pp.323-338.
8.Brinson, G..P., Hoodand, L.R., Beebower, G..L., “Determinants of Portfolio Performance”, Financial Analysts Journal, Vol.42, Iss. 4, July/August 1986, pp. 33-44.
9.Brooks, C., and Persand, G.., “Volatility forecasting for risk management”, Journal of Forecasting, Vol.22, 2003, pp. 1-22.
10.Cassuto, A.E., “Non-normal Error Patterns: How to Handle Them”, Journal of Business Forecasting Method & System, Vol. 14, 1995, pp. 15-16.
11.Chen, Z.P., and Zhao, C.E., “Is the MV Efficient Portfolio Really that Sensitive to Estimation Errors?”, Asia-Pacific Journal of Operational Research, Vol.19, Iss. 2, Nov 2002, pp. 149-168.
12.Parker, D.B., “Learning-logic, Center for Computational Res. in Economics and Management Sci”, Technical Report TR-47, MIT, April, 1985.
13.Rumelhart, D.E., Hinton, G.E., and Williams, R.J., “Learning Internal Representations by Error Propagation”, Nature, Vol.323, 1986, pp.533-536.
14.Dickey, D.A., and Fuller, W.A., “Distribution of the Estimates for Autoregressive Time Series with Unit Root”, Journal of the American statistical Association, Vol.74, No.366, 1979, pp.427-431.
15.Duffie, D. and Pan, J., “An Overview of Value at Risk”, Journal of Derivative, Vol.4, no.3, 1997, pp.7-49.
16.Engle, R.F., and Granger, C.W.J., “Co-Integration and Error Correction: Representation, Estimation, and Testing”, Econometrics, Vol.55, Iss.2, 1987, pp. 251-277.
17.Engle, R.F., and Granger, C.W.J., Long-run Economic Relationships, Oxford University Press, New York, 1991.
18.Engle, R.F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation”, Econometrics, Vol.50, 1982, pp.987-1007.
19.Gloria, G.R., Lee, T.H., and Mishra, S., “Forecasting Volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood”, International Journal of Forecasting, Vol.20, 2004, pp. 629-645.
20.Golub, B.W., and Tilman, L.M., “Measuring Yield CurveRisk Using Principal Components Analysis〞, Journal of Portfolio Management, Vol.23, 1997, pp.72-84.
21.Granger, C.W.J., and Newbold, P., “Spurious regression in econometrics”, Journal of Econometrics, Vol. 2, 1974, pp.111-120.
22.Hendricks, Darryll, “Evaluation of Value-at-Risk Models Using Historical Data”, Economic Policy Review,Vol.2, no1, 1996, pp.39-70.
23.Jackson, P., Maude, D.J., and Perraudin, W., “Bank Capital and Value at Risk”, Journal of Derivative, Vol.4, no.3, 1997, pp.73-90.
24.John, Hull, and Alan, White, “Values at Risk When Daily Changes in Market Variables are not Normally Distributed”, Journal of Derivative, Vol.5, no3, 1998, pp.9-19.
25.Jorion, Philippe, “Risk2 : Measuring the risk in value at risk”, Financial Analysts Journal, November/December 1996, pp. 47-56.
26.J.P. Morgan, Risk Metrics Technical Document, 4th,1996.
27.Kalman, R.E., “A New Approach to Linear Filtering and Prediction Problems”, ASME Journal of Basic Engineering, Vol.83, 1960, pp.34-57.
28.Koutmos, G., and Tucker, M., “Temporal Relationship and Dynamic Interactions between Spot and Futures Stock Markets”, Journal of Future Markets, Vol.16, no1, 1996, pp.55-69.
29.Kupiec, P.H., “Techniques for Verifying the Accuracy of Risk Measurement Models,” Journal of Derivatives, Vol.3, Winter, 1995, pp.73-84.
30.Linsmeier, T.J., and Pearson, N.D., “Risk Measurement: An Introduction to Value at Risk”, University of Illinois at Urbana-Champaign, 1996.
31.Ljung, G.M., and Box, G.E.P., “On a measure of Lack of Fit in Time Series Models”, Biometrica, 1978, pp.297-303.
32.Lopez, J.A., “Evaluating the Predictive Accuracy of Volatility Models.” Journal of Forecasting, Vol.20,no 2, 2001, pp.87-109.
33.Markowitz, H., “Portfolio Selection”, Journal of Finance, Vol.6, 1952, pp. 77-91.
34.Marshall, C., and Siegel, M., “Value at Risk:Implementing a Risk Measurement Standard”, Journal of Derivatives, Vol.4, no.3, 1997, pp.91-111.
35.Nelson, D., “Conditional Heteroskedasticity in Asset Returns : A New Approach”, Econometrica, Vol.59, 1991, pp.347-370.
36.Werbos, P., Beyond Regression: New Tool for Prediction and Analysis in the Behavioral Sciences, Ph.D. Thesis, Harvard University, 1974.
37.Said, S., and Dickey, D., “Testing for Unit Roots in Autoregressive-Moving Average Models with Unknown Order”, Biometrics, Vol.71, 1984, pp.599-607.
38.Venkatarman, S., ” Value at Risk for Mixture of Normal Distribution:The Use of Quasi-Bayesian Estimation Techniques”, Economic Perspectives, Vol.23, 1997, pp.2-13.
39.Cun, Y.Le., “Une procedure d’apprentissage pour reseau a seuil assymetrique”, Cognitiva, Vol.85, 1985, pp.599-604.