|
[1] A. Dewanji, J. K. Kalbfleisch (1986), Nonparametric Methods for Survival/Sacrifice Experiment, Biometrics, 42:325-341. [2] A. E. Raftery (1985). A model for higher-order Markov chains. Journ of the Royal Statistical Society. Series B, 47:528-539. [3] B. Kedem and K. Fokianos (2002). Regression Models for Time Series Analysis, Wiley, New York. [4] C. S.Wong andW. K. Li (2000). On a mixture autoregressive model. Journal of the Royal Statistical Society, Series B, 62:95-115 [5] C. S. Wong and W. K. Li (2001a). On a mixture logistic mixture autoregressive model. Biometrika, 88:833-846. [6] C. S. Wong and W. K. Li (2001b). On a mixture autoregressive conditional model heteroscedastic model. Journal of the American Statistical Association, 96:982-995. [7] D. Commenges (2002), Inference for multi-state models from interval-censored data, Statistical Methods in Medical Research, 11:167-182 [8] D.R. Cox, (1972). Regression models and life tables, Journal of the Royal Statistical Society, Series B, 34:187-202. [9] E. Ghysels (2000). Some econometric Recipes for high-frequency data cocking. Journal of Business and Economic Statistics, 18:154-163. [10] E. L. Kaplan and P. Meier (1958). Nonparametric estimation from incomplete observations. Journal of American Statistical Association, 3:457-481. [11] E. V. Slud and B. Kedem (1994). Partial likelihood analysis of logistic regression and autoregression. Statistica Sinica, 4:89-106. [12] E .W . Saad, D .V . Prokhorov, and D .C . Wunsch(1998). Comparative Study of Stock Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural Networks, IEEE TRANSACTIONS ON NEURAL NETWORKS, 9:1456-1470. [13] G .S .Jang, F . Lai, B . W . Jiang,and L . H. Chien(1991), An Intelligent Trend Prediction and Reversal Recognition System Using Dual-module Neural Networks, IEEE,42-51. [14] J. D. Kalbfleisch and R. L. Prentice (1973). Marginal likelihoods based on Cox’s regression and life model, Biometrika, 60:267-278. [15] J. Hauseman, A. Lo and C. MacKinlay (1992). An ordered probit analysis of transaction stock prices, Journal of Financial Economics, 31:319-379. [16] J .H . Wang ,and J .Y . Leu(1996). Stock Market Trend Prediction Using ARIMAbased Neural Networks, IEEE, 4,2160-2165. [17] J. R. Stroud, P. M¨ uller, and B. Sans´o (2001). Dynamic models for spatiotemporal data. Journal of the Royal Statistical Society, Series B, 63:673-689. [18] M.West, P. J. Harrison, and H. S. Migon (1985). Dynamic generalized linear models and Bayesian forecasting. Journal of the American Statistical Association, 80:73-97, with discussion. [19] N. D. Le, R. D. Martin, and A. E. Reftery (1996). Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models. Journal of the American Statistical Association, 91:1504-1515. [20] N. E. Breslow (1974). Covariance analysis of censored survival data, Biometrics, 30:89-99. [21] O.O. Aalen (1976). nonparametric inference in connection with multiple decrements models. Scandinavian Journal of Statistics, 3:15-27. [22] P.K. Andersen and N. Keiding(2002), Multi-state models for event history analysis, Statistical Methods In Medical Research, 11:91-115. [23] P. K. Andersen, S. Z.Abildstrom, S.Rosth (2002), Competing risks as a multi-state model, Statistical Methods in Medical Research, 11:203-215. [24] R. E. McCulloch and R. S. Tsay (2001). Nonlinearity in high frequency data and hierarchical models, Studies in Nonlinear Dynamics and Econometrics, 5:1-17. [25] R. F. Engle and J. R. Russell (1998). Autoregressive conditional duration: A new model of irregularly spaced transaction data, Econometrica, 66:1127-1162. [26] R. H. Shumway and D. S. Stoffer (2000). Time Series Analysis and Its Applications. Springer, New York. [27] R. S. Tsay (2002). Analysis of Financial Time Series, Chapter 6,Wiley, New York. [28] T. H. Rydberg and N. Shephard (1998). Dynamics of trade-by-trade price movements: decomposition and models, Working paper, Nuffield College, Oxford University.
|