陳正昌,程炳林 (1998)。SPSS、SAS、BMDP統計套裝軟體在多變量統計上的應用,台北市:五南。
陳雅芳,健保局中區分局推行TQM之案例分析-以國品獎為架構,中原大學工業工程學系碩士學位論文,2002年。鄭中平,非隨機遺漏之結構方程模型估計-潛在變項選擇模型與組型混合模型,國立台灣大學心理學研究所博士論文,2003年。Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716-723.
Arminger, G.. & Stein, P. (1997). Finite mixtures of covariance structure modles with regressors. Sociological Methods and Research, 26, 148-182.
Arminger, G.., Stein, P. & Wittenberg, J.(1999). Mixtures of conditional mean- and covariance-structure modles. Psychometrika, 64, 475-494.
Bauer, D. J. & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: potential problems and promising opportunities. Psychological Methods, 9, 3-29.
Bentler, P. M., & Bonett, D. G. (1980). Significant tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606.
Bollen, K. A. (1986). Sample Size and Bentler and Bonett's Nonnormed Fit Index. Psychometrika, 51, 375-77.
Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley.
Boomsma, A. & Hoogland, J. J. (2001).The Robustness of LISREL modeling revisited. In R. Cudeck, S. du Toit, & D. Sörbom (Eds.), Structural Equation Modeling: Present and future. A festschrift in honor of Karl Jöreskog (pp. 139-168). Chigago, IL: Scientific Software International.
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345-370.
Browne, M., & Arminger, G.(1995). Specification and Estimation of Mean and Covariance Structures. In G.Arminger,C.C. Clogg und M. E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences. New York: Plenum.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models. Newbury Park, CA: Sage.
Fan, X., Thompson, B, & Wang, L. (1999). The effects of sample size, estimation methods, and model specification on SEM fit indices. Structural Equation Modeling: A Multidisciplinary Journal, 6, 56-83.
Gerbing, D. W. & Anderson, J. C. (1985). The effects of sampling error and model characteristics on parameter estimatin for maximum likelihood confirmatory factor analysis. Multivariate Behavioral Research, 20, 255-271.
Hox, J. J.& T.M. Bechger(1998). An Introduction to Structural Equation Modeling. Family science Review, 11, 354-373.
Jackson, D. L. (2001). Sample size and number of parameter estimates in maximum likelihood confirmatory factor analysis: A Monte Carlo investigation. Structural Equation Modeling, 8(2), 205-223.
Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 39-59.
Lee, S. Y., Poon, W. Y. & Bentler, P. M. (1992). Structural equation models with continuous and polytomous variables. Psychometrika, 57, 89-105.
Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness of fit indexes in comfirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103, 391-410.
Meade, A. W. & Lautenschlager, G. J. (2004). A Monte-Carlo study of confirmatory factor analytic tests of measurement equivalence/invariance. Structural Equation Modeling, 11(1), 60-72.
Muller, R. O. (1996). Basic principles of structural equation modeling: an introduction to LISREL and EQS. New York, CA: Springer-Verlag.
Muthén, B.O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115-132.
Muthén, B.O. & Muthén, L. K. (1998). Mplus user’s guide. Los Angeles, CA: Muthén & Muthén.
Muthén, B.O. & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using EM algorithm. Biometrics, 55, 463-469.
Muthén, B.O. (2001b). Second-generation gtructural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling. In Collins, L. M. & Sayer, A. (Eds.), New methods for the analysis of change. Washington, D. C.: APA.
Muthén, B. O. (2002). Beyond SEM: General latent variable modeling. Beha-viormetrika, vol.29, no.1, 81-117.
Muthén, L.K. & Muthén, B.O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 4, 599-620.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1-10.
Velicer, W. F., & Fava, J. L. (1998). Effects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3, 231-251.
Yung, Y. F. (1997). Finite mixture in comfirmatory factor-analysis models. Psychometrika, 62, 297-330.